Synchronization in Unidirectional Ring Networks of Chaotic Systems with Delay-coupling

Toshiki OGUCHI†, Thijs KNIKNIE‡‡, and Henk NIJMEIJER††
† Graduate School of Science & Engineering, Tokyo Metropolitan University
1-1, Minami-Osawa, Hachioji-shi, Tokyo 192–0397 Japan
‡‡ Department of Mechanical Engineering, Eindhoven University of Technology
5600MB, Eindhoven, The Netherlands
E-mail: ††t.oguchi@tmu.ac.jp

Abstract In this paper, we consider the synchronization problem in unidirectional ring networks of chaotic systems with time-delay coupling. Firstly, we introduce the notion of strict semi-dissipativity and show by using the small-gain theorem that the trajectories of coupled systems satisfying the strict semi-dissipativity are bounded. Then we derive a sufficient condition for synchronization of the systems coupled in a unidirectional way by using a stability criterion for delay systems.

Key words Synchronization, Chaotic systems, Time-delay, unidirectional ring network

1. Introduction

Synchronization phenomena are of interest to researchers in applied physics, biology, social sciences, engineering([5],[9],[10],[12]). More recently, applications of these phenomena to engineering have also been considered and analyzed in practical situations, time-delays caused by signal transmission affect the behavior of coupled systems. It is therefore important to study the effect of time-delay in existing synchronization schemes. Although the effect of time-delay in the synchronization of coupled systems has been investigated both numerically and theoretically by a number of researchers, these works concentrate on synchronization of systems with a coupling term typically described by \(K(x_i(t-\tau) - x_j(t-\tau)) \) or \(K(Cx_i(t-\tau) - Cx_j(t-\tau)) \) ([1]) and there are only few results for the case in which the coupling term is described by \(K(x_i(t) - x_j(t-\tau)) \). The former requires that a feedback in each system has the same length of time-delay as the transmittal delay, while the latter does not need such a delayed feedback. For the latter case, however, as the coupling term does not vanish in synchronous condition, even if uncoupled each system is bounded, the coupled systems are not necessarily bounded. Therefore the synchronization problem has seldom been studied. We have already considered the problem for two chaotic systems bidirectionally coupled with the coupling term \(K(x_i(t-\tau) - x_j(t-\tau)) \) and derived sufficient conditions for synchronization ([8],[13]).

In this paper we consider synchronization of identical chaotic systems which are unidirectionally coupled in a ring with state/output feedback described by \(K(y_i(t) - y_j(t-\tau)) \). First, we introduce the notion of strict semi-dissipativity and show by using the small-gain theorem that coupled systems satisfying the strict semi-dissipativity are bounded. Then we derive a sufficient condition for synchronization of the systems coupled with unidirectional communication by using the stability criterion for delay systems.

2. Preliminaries

In this section, we review some results derived in our previous work ([13]). Throughout this paper, \(\| \cdot \| \) denotes the Euclidean norm. For a vector function \(v(t) : [0,\infty) \to \mathbb{R}^n \), if \(\|v\|_{\infty} \triangleq \sup_{t \geq 0} \|v(t)\| < \infty \), then we denote \(v \in L^\infty_{\infty} \). Define a continuous norm by \(\|\phi\|_c \triangleq \max_{-\tau \leq \theta \leq 0} \|\phi(\theta)\| \) for a vector function \(\phi : [-\tau,0] \to \mathbb{R}^n \).

2.1 Semi-passivity and semi-dissipativity

Consider the nonlinear system

\[
\dot{x}_i(t) = f_i(x_i, u_i) \quad , \quad y_i(t) = h_i(x_i) \quad (t \geq 0)
\]

with state \(x_i \in \mathbb{R}^n \), input \(u_i \in \mathbb{R}^m \), output \(y_i \in \mathbb{R}^m \), \(f_i : \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^n \) and \(h_i : \mathbb{R}^n \to \mathbb{R}^m \).

According to semi-passivity as defined in [11], we introduce strict semi-passivity and strict semi-dissipativity as follows.

[Definition 1] (strict semi-passivity) System (1) is said to be strictly semi-passive, if there exist a \(C^1 \)-class function

\[
f_i(x_i, u_i) \quad \text{and} \quad h_i(x_i)
\]
$V_i : \mathbb{R}^n \to \mathbb{R}$, class \mathcal{K}_∞ functions $\underline{\alpha}_i(\cdot)$, $\overline{\alpha}_i(\cdot)$, and $\alpha_i(\cdot)$ satisfying

\[
\underline{\alpha}_i(||x_i||) \leq V_i(x_i) \leq \overline{\alpha}_i(||x_i||)
\]

\[
\dot{V}_i(x_i) \leq -\alpha_i(||x_i||) - H(x_i) + y_i^T u_i
\]

for all $x_i \in \mathbb{R}^n$, $u_i \in \mathbb{R}^m$, $y_i \in \mathbb{R}^m$, where the function $H(x_i)$ satisfies the following condition:

\[
||x_i|| \geq \eta_i \Rightarrow H(x_i) \geq 0
\]

for a positive real number η_i.

Definition 2 (strict semi-dissipativity) System (1) is said to be strictly semi-dissipative with respect to the supply rate $w_i(u_i, y_i)$, if there exist a C^1-class function $V_i : \mathbb{R}^n \to \mathbb{R}$ and class \mathcal{K}_∞ functions $\underline{\alpha}_i(\cdot)$, $\overline{\alpha}_i(\cdot)$, and $\alpha_i(\cdot)$ satisfying

\[
\underline{\alpha}_i(||x_i||) \leq V(x_i) \leq \overline{\alpha}_i(||x_i||)
\]

\[
\dot{V}_i(x_i) \leq -\alpha_i(||x_i||) + w_i(u_i, y_i) - H(x_i)
\]

for all $x_i \in \mathbb{R}^n$, $u_i \in \mathbb{R}^p$, $y_i \in \mathbb{R}^m$, where the function $H(x_i)$ satisfies

\[
||x_i|| \geq \eta_i \Rightarrow H(x_i) \geq 0
\]

for some positive real number η_i.

Remark 1 The system is strictly semi-passive if the supply rate $w_i(u_i, y_i) = y_i^T u_i$ for all $u_i \in \mathbb{R}^m$.

For a strictly semi-dissipative system, the following lemma can be proved in a similar way as the argument of the input-to-state stability (ISS) in [3].

Lemma 1 Suppose that system (1) is strictly semi-dissipative with respect to $w_i(u_i, y_i) \leq \beta_i(||u_i||)$ where $\beta_i \in \mathcal{K}$. This means that there exists a C^1-class function $V_i : \mathbb{R}^n \to \mathbb{R}$ such that

\[
\underline{\alpha}_i(||x_i||) \leq V_i(x_i) \leq \overline{\alpha}_i(||x_i||)
\]

\[
\dot{V}_i(x_i) \leq -\alpha_i(||x_i||) + w_i(u_i, y_i) - H(x_i)
\]

where α_i is a class-\mathcal{K}_∞ function and $H(x_i)$ has the property (4). Then the trajectories $x_i(t)$ of the system (1) satisfy the following inequality for any $u_i \in \mathcal{L}_\infty$ and the initial state $x_i(0)$.

\[
\limsup_{t \to \infty} ||x_i(t)|| \leq \max\{\gamma_i(\limsup_{t \to \infty} ||u_i(t)||), \rho_i(\eta_i)\}
\]

where ρ_i and γ_i are defined by

\[
\rho_i(\cdot) = \underline{\alpha}_i^{-1} \circ \overline{\alpha}_i(\cdot),
\]

\[
\gamma_i(\cdot) = \underline{\alpha}_i^{-1} \circ \overline{\alpha}_i \circ \alpha_i^{-1} \circ \kappa \beta_i(\cdot)
\]

with $\kappa > 1$.

2.2 Convergency of coupled systems

Consider the following two systems

\[
\dot{x}_i(t) = f_i(x_i, u_i) \quad y_i(t) = C_i x_i \quad (t \geq 0)
\]

where $x_i \in \mathbb{R}^n$, $u_i = \text{col}(u_{i1}, \ldots, u_{iN}) \in \mathbb{R}^m$, $y_i \in \mathbb{R}^m$, $C_i \in \mathbb{R}^{m \times n}$ and $f_i : \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^n$ with initial conditions $x_i(0) = x_{i0}$ for $i = 1, 2$, respectively.

Suppose that each system (10) is strictly semi-dissipative, respectively. Then from Lemma 1, each system has the property (7). Now, we consider the case in which these two systems are coupled by the following inputs containing time-delay,

\[
\begin{align*}
\dot{u}_1(t) &= y_2(t - \tau) = C_2 x_2(t - \tau) \\
\dot{u}_2(t) &= y_1(t - \tau) = C_1 x_1(t - \tau).
\end{align*}
\]

where $\tau(t)$ is a constant delay and the initial conditions of x_i for $i = 1, 2$ are respectively given by

\[
x_i(\theta) = \phi_i(\theta) \quad (-h_i \leq \theta \leq 0)
\]

\[
x_i(0) = \phi_i(0) = x_{i0}
\]

where $\phi_i : [-\tau, 0] \to \mathbb{R}^n$.

Define class-\mathcal{K} functions as

\[
\tau_{i2}(r) = \gamma_i(\sigma_{\text{max}}(C_i) \cdot r) \quad (r \geq 0)
\]

\[
\tau_{i2}(r) = \gamma_i(\sigma_{\text{max}}(C_i) \cdot r)
\]

where $\gamma_i(\cdot)$ are defined by (9) and $\sigma_{\text{max}}(\cdot)$ denotes the maximum singular value of a matrix.

Then we obtain the following lemma.

Lemma 2 For coupled system (10) with the coupling term (11), if the functions $\tau_{i2}(\cdot)$ and $\tau_{i2}(\cdot)$ in (12) satisfy

\[
\tau_{i2} \circ \tau_{i2}(r) < r \quad \text{for all } r > 0,
\]

then the trajectories $x_1(t)$ and $x_2(t)$ satisfy

\[
\limsup_{t \to \infty} ||x_1(t)|| \leq \max\{\tau_{i2} \circ \rho_2(\eta_2), \rho_1(\eta_1)\}
\]

\[
\limsup_{t \to \infty} ||x_2(t)|| \leq \max\{\tau_{i2} \circ \rho_1(\eta_1), \rho_2(\eta_2)\}
\]

where ρ_i is defined by (8) and η_i satisfies (4).

3. Synchronization in Unidirectional Ring Networks

We consider N identical systems:

\[
\Sigma_i : \begin{cases}
\dot{x}_i(t) = Ax_i + f(x_i) + Bu_i \\
y_i(t) = C_i x_i \\
x_i(\theta) = \phi_i(\theta) \quad (-\tau \leq \theta \leq 0)
\end{cases} \quad (t \geq 0)
\]

for $i = 1, \ldots, N$, where $x_i \in \mathbb{R}^n$, $u_i \in \mathbb{R}^m$, $y_i \in \mathbb{R}^m$, $A \in \mathbb{R}^{n \times n}$, $B \in \mathbb{R}^{n \times m}$ and $C \in \mathbb{R}^{m \times n}$. In addition, f :
$\mathbb{R}^n \times \mathbb{R}^m \rightarrow \mathbb{R}^n$ is Lipschitz continuous and $\phi_i : [-\tau, 0] \rightarrow \mathbb{R}^n$ with $\tau > 0$.

Throughout this paper, we assume that each system (16) is strictly semi-passive and these systems are coupled by the following controller

$$u_i(t) = K_{ij}(y_i(t) - y_j(t - \tau))$$ (17)

for $(i, j) = \{(1, N), (2, 1), \ldots, (N, N - 1)\}$, where $\tau > 0$ is constant delay and $K_{ij} = K_{ji}^T \leq 0$. This network has an undirected ring structure. In addition, if $m = n$ and C is nonsingular, the coupling means a full state coupling. While, if $m < n$, it is an output coupling. Here we formulate synchronization of coupled systems as follows.

[Definition 3] If there exist a positive real number r such that the trajectories $x_i(t)$ of the systems (16) with initial conditions $x_i(0)$ satisfy $\|x_i(t) - x_j(t)\| \rightarrow 0$ as $t \rightarrow \infty$ for all i, j, then the coupled systems (16) and (17) are asymptotically synchronized.

In this paper, we derive a synchronization condition for systems coupled in an undirected ring network.

3.1 Boundedness of Coupled Systems

We show under suitable assumptions the boundedness of the coupled systems (16) and (17). Firstly, we consider the case $m = n$ and assume the non-singularity of the matrix C. Note that strictly semi-passive systems with the coupling terms (17) are strictly semi-dissipative. The fact can be shown as follows.

For the systems (16), there exist some C^1 class-function $V : \mathbb{R}^n \rightarrow \mathbb{R}$, class-$K_\infty$ functions $\underline{\alpha}(\cdot)$, $\overline{\alpha}(\cdot)$ and $\epsilon(\cdot)$ satisfying

$$\underline{\alpha}(\|x_i\|) \leq V(x_i) \leq \overline{\alpha}(\|x_i\|)$$ (18)

$$\dot{V}(x_i) \leq -\epsilon(\|x_i\|) - H(x_i) + y_i^T u_i$$ (19)

for all $x_i \in \mathbb{R}^n$, $u_i \in \mathbb{R}^m$, $y_i \in \mathbb{R}^m$. Substituting (17) into (19), we obtain

$$\dot{V}(x_i) \leq -\epsilon(\|x_i\|) - H(x_i) + y_i^T K_{ij}(y_i - y_j(t - \tau))$$

$$\leq -\epsilon(\|x_i\|) - H(x_i) + \frac{1}{2} y_i^T K_{ij} y_i$$

$$- \frac{1}{2} y_i^T (t - \tau)^T K_{ij} y_i$$

$$\leq -\alpha(\|x_i\|) - H(x_i) + \beta(\|y_i(t - \tau)\|)$$ (20)

where

$$\alpha(r) = \epsilon(r) - \frac{1}{2} \lambda_{\max}(K_{ij}) \sigma_{\min}^2(C) r^2$$

$$\beta(r) = -\frac{1}{2} \lambda_{\min}(K_{ij}) r^2$$ (21)

Since the matrix K_{ij} is negative semi-definite, the functions $\alpha(\cdot)$ and $\beta(\cdot)$ in (21) belong to class K_∞. Therefore the systems (16) with (17) can be seen as a strictly semi-dissipative systems with respect to $\beta(\|v_i\|)$ with inputs $v_i = y_j(t - \tau)$.

From the property, we obtain the following result by using Lemma 1.

[Theorem 1] For N systems (16) coupled by (17), define class-K functions as

$$\pi_{ij}(r) := \gamma_i(\sigma_{\max}(C) r)$$

for $r \geq 0$, where γ_i are defined in Lemma 1. If the functions $\pi_{ij}(\cdot)$ satisfy

$$\pi_{NN} \circ \cdots \circ \pi_{1N}(r) < r \quad \text{for all} \quad r > 0,$$

then the trajectories of the coupled systems converge to the bounded set

$$\Omega = \{x_i \in \mathbb{R}^n ||x_i|| \leq \rho(y_i)\}. \quad (22)$$

This theorem can be proved in a similar way as the proof of Lemma 2 [13].

If all coupling gains are identical, that is $K_{ij} = K \leq 0$, then the functions γ_i are also identical, and the above result is simplified as follows.

[Corollary 1] If $K_{ij} = K \leq 0$ and $\pi_{ij}(r) = \pi := \gamma(\sigma_{\max}(C) r) < r$ for all $r \geq 0$, then the trajectories of the coupled systems converge to the bounded set

$$\Omega = \{x_i \in \mathbb{R}^n ||x_i|| \leq \rho(y_i)\}. \quad (23)$$

Next, we consider the case of output coupling, that is $m < n$. Then we assume that CB is non-singular.

From the non-singularity of CB, the system (16) can be transformed to the following normal form [4].

$$\dot{y}_i(t) = a(y_i, z_i) + CBu_i \quad (24)$$

$$\dot{z}_i(t) = q(y_i, z_i) \quad (25)$$

for $i = 1, \ldots, N$, where $z_i \in \mathbb{R}^{n-m}$ and $\begin{bmatrix} y_i^T & z_i^T \end{bmatrix} = \Phi x_i$ for a nonsingular matrix $\Phi \triangleq \begin{bmatrix} C^T & D^T \end{bmatrix}^T$ with $D \in \mathbb{R}^{(n-m) \times n}$ such that $DB = 0$ and functions $a : \mathbb{R}^n \times \mathbb{R}^{n-m} \rightarrow \mathbb{R}^m$ and $q : \mathbb{R}^n \times \mathbb{R}^{n-m} \rightarrow \mathbb{R}^m$ are Lipschitz continuous.

At this point, we assume that

- The system (24) is strictly semi-dissipative with respect to $w((u_i, z_i), y_i) \leq \beta_y(\|z_i\|) + y_i^T u_i$, where $\beta_y \in K$.
• The system (25) is strictly semi-dissipative with respect to $w(y_i, z_i) \leq \beta_3(\|y_i\|)$, where $\beta_3 \in \mathcal{K}$.

These assumptions mean that there exist positive definite C^1-class functions V_θ and V_θ for the systems (24) and (25) such that the following inequalities hold.

$$V_\theta(y_i) \leq -\epsilon_\theta(\|y_i\|) - H_\theta(y_i) + \beta_\theta(z_i)$$

where $\beta_\theta(z_i) = \epsilon_\theta(r) - \frac{1}{2}\lambda_{\max}(K_{ij})r^2$ and $\beta_{ij}(r) = -\frac{1}{2}\lambda_{\min}(K_{ij})r^2$. Then, by applying the controller (17), from lemma 1, we obtain the following theorem.

Theorem 2 For all $r > 0$ and $i, j(1 \leq i < j \leq N)$, if

$$\gamma_{ij}(r) < r \quad \text{and} \quad \gamma_{ij}(r) < r$$

hold, then the trajectories of the system (16) converge to the set

$$\Omega := \{x_i \in \mathbb{R}^n \mid \|y_i\| \leq s_y \text{ and } \|z_i\| \leq s_z\}$$

where

$$s_y := \max\{\rho_y(\eta_y), \gamma_y \circ \rho_y(\eta_y)\}$$

$$s_z := \max\{\rho_z(\eta_z), \gamma_z \circ \rho_z(\eta_z)\}$$

$$\rho_y(\cdot) = \frac{1}{\sqrt{2}} \gamma_y^{-1} \circ \sigma_y(\cdot),$$

$$\gamma_y(\cdot) = \rho_y \circ \gamma_y^{-1} \circ \sigma_y(\cdot),$$

$$\rho_z(\cdot) = \frac{1}{\sqrt{2}} \gamma_z^{-1} \circ \sigma_z(\cdot),$$

$$\gamma_z(\cdot) = \rho_z \circ \gamma_z^{-1} \circ \sigma_z(\cdot).$$

3.2 Synchronization Conditions

Next we consider a condition for synchronization of the coupled systems (16) with (17).

Define the synchronization error $e(t)$ as

$$e(t) := [e_{12}(t)^T, e_{13}(t)^T, \ldots, e_{1N}(t)^T]^T \in \mathbb{R}^{(N-1)n}$$

with $e_{1k}(t) = x_1(t) - x_k(t)$ for $k = 2, \ldots, N$. Then $\lim_{t \to \infty} \|e(t)\| = 0$ means all systems asymptotically synchronize. Therefore we consider a condition in which the dynamics of e has $e = 0$ as an asymptotically stable equilibrium. In general, however, the dynamics of e does not have $e = 0$ as a solution for arbitrary coupling gains and delays in (17). In order to give the network a symmetric structure, we set the coupling gains and the delays: $K_{ij} = K$, $\tau_{ij} = \tau$. Then, the dynamics of the error $e(t)$ has $e = 0$ as an equilibrium solution. In addition, note that x_1 converges to Ω of the discussion in the preceding section.

By using the boundedness of the trajectory x_1, we derive a synchronization condition. For the unidirectional ring network, the synchronization error dynamics linearized around $e = 0$ is given by

$$\dot{e}(t) = A_0(x_1)e(t) + A_1e(t - \tau)$$

where $A_0(x_1) = I \otimes \hat{A}(x_1)$ with

$$\hat{A}(x_1) = A + BK \tau$$

for $D(x_1) = \frac{2(1)}{\tau}$ and A_1 is defined as

$$A_1 = \Lambda \otimes BK$$

and the notation \otimes denotes the Kronecker product. If $e = 0$ is asymptotically stable, $e(t)$ asymptotically converges to zero and synchronization is accomplished. Therefore the synchronization problem can be reduced to the stability problem for the above retarded system. By using the Lyapunov-Krasovskii theorem, we obtain the following synchronization condition.

Theorem 3 For all $x_1 \in \Omega$ given by (23) or (27), if there exist positive definite matrices $P, Q, Z \in \mathbb{R}^{(N-1)n \times (N-1)n}$ and matrices $Y, W \in \mathbb{R}^{(N-1)n \times (N-1)n}$ satisfying the following LMI, then $e = 0$ of the error dynamics is asymptotically stable.

$$\begin{bmatrix}
\Gamma_{11} & \Gamma_{12} & -\tau Y & \tau A_0^T Z \\
\Gamma_{12} & \Gamma_{22} & -\tau W & \tau A_1^T Z \\
-\tau Y^T & -\tau W^T & -\tau Z & 0 \\
\tau Z A_0 & \tau Z A_1 & 0 & -\tau Z
\end{bmatrix} < 0$$

where

$$\begin{align*}
\Gamma_{11} &= PA_0(x_1) + A_0^T(x_1)P + Y + Y^T + Q \\
\Gamma_{12} &= PA_1 - Y + W^T \\
\Gamma_{22} &= -Q - W - W^T.
\end{align*}$$

As the LMI (30) is affine with respect to the system matrices $A_0(x_1)$ and A_1, this result can be extended to a stability criterion for the polytopic systems.

Since x_1 is bounded, each element of $D(x_1)$ is also bounded. As a result, the approximated error dynamics (29) can be rewritten by the following polytopic system:

$$\dot{e}(t) = \sum_{i=1}^m p_i A_i e(t) + A_1 e(t - \tau)$$
where \(A^i_0 = A_0 + D_i \) are constant matrices and \(p_i(x_1) \in [0, 1] \) are polytopic coordinates satisfying the convex sum property \(\sum_{i=1}^m p_i(x_1) = 1 \). Using the “vertex systems”, we can obtain the following polytopic linear differential inclusion (PLDI)

\[
\dot{e}(t) \in \text{Co}\{ A^i_0 e(t) + A_1 e(t - \tau), \ldots \}, \\
A^m_0 e(t) + A_1 e(t - \tau) \}
\]

where \(\text{Co} \) denotes a convex hull. Therefore we can obtain the following stability criterion.

Theorem 4 Consider the PLDI (31). If there exist positive definite matrices \(P, Q^i, Z \in \mathbb{R}^{(N-1)n \times (N-1)n} \) and matrices \(Y^i, W^i \in \mathbb{R}^{(N-1)n \times (N-1)n} \) for \(i = 1, \ldots, m \) satisfying the following LMI, then \(\epsilon = 0 \) of the error dynamics is asymptotically stable.

\[
\begin{bmatrix}
\Gamma_{11} & \Gamma_{12} & -\tau Y^i & \tau A^i_0 Z \\
\Gamma_{12}^T & \Gamma_{22} & -\tau W^i & \tau A^i_0 Z \\
-\tau Y^i & -\tau W^i & -\tau Z & 0 \\
\tau Z A_0 & \tau Z A_1 & 0 & -\tau Z
\end{bmatrix} < 0
\tag{32}
\]

where

\[
\begin{align*}
\Gamma_{11} &= PA^i_0 + A^i_0 P + Y^i + Y^i T + Q^i \\
\Gamma_{12} &= PA_1 - Y^i + W^i T \\
\Gamma_{22}^i &= -Q^i - W^i - W^i T.
\end{align*}
\]

Using Theorem 4, we can check the stability of \(\epsilon = 0 \) by solving a finite number of LMIs.

Corollary 2 Suppose that the linearized synchronization error dynamics (29) is described by the PLDI (31). If there exist positive definite matrices \(P, Q^i, Z \in \mathbb{R}^{(N-1)n \times (N-1)n} \) and matrices \(Y^i, W^i \in \mathbb{R}^{(N-1)n \times (N-1)n} \) for \(i = 1, \ldots, m \) satisfying the LMI (32), then the synchronization of coupled systems is asymptotically accomplished.

4. Example

Consider a unidirectional ring network of four coupled Lorenz systems \((N = 4)\).

\[
\dot{x}_i(t) = \begin{bmatrix}
\sigma(x_{i2} - x_{i1}) \\
r(x_{i1} - x_{i2} - x_{i1}x_{i3}) \\
-bx_{i2} + x_{i1}x_{i2}
\end{bmatrix} + Bu_i, \quad y_i = Cx_i
\tag{33}
\]

where \(\sigma = 10, \ r = 28, \ b = 8/3 \) and \(B^T = C \). At this stage, we assume that \(m = n \) and \(C = I_{3 \times 3} \) and the coupled system forms an unidirectional ring network with \(K_{21} = K_{32} = K_{43} = K_{44} := K = -kI_{3 \times 3} < 0 \) and \(\tau_{ij} = \tau \) in (17).

![Figure 2: An unidirectional ring network of 4-coupled systems](image)

We consider a storage function \(V(\tilde{x}_i) = \frac{1}{2} \tilde{x}_i^T \tilde{x}_i \), where \(\tilde{x}_i = [x_{i1} \ x_{i2} \ x_{i3} - \sigma - r]^T \). Then the derivative along the trajectory of each system is given by \(\dot{V}(\tilde{x}_i) = -\alpha(\|\tilde{x}_i\|) - H(\tilde{x}_i) + \beta(\|\tilde{x}_j\|) \) for \(i = 1, 2, 3, 4 \) and \(j = 1, 2, 3, 4 \), where the functions \(\alpha(\cdot), \beta(\cdot) \) and \(H(x) \) are defined as \(\alpha(\|\tilde{x}_i\|) = (\frac{k}{2} + \epsilon)\|\tilde{x}_i\|^2, \beta(\|\tilde{x}_j\|) = \frac{1}{2}\|\tilde{x}_i\|^2 \) and

\[
H(\tilde{x}_i) = (\sigma - \epsilon)\tilde{x}_i^2 + (1 - \epsilon)\tilde{x}_{i2}^2 \\
+ (b - \epsilon)(\tilde{x}_{i1} - \frac{b - 2\epsilon}{2(b - \epsilon)}(\sigma + r))^2 - \frac{b^2(\sigma + r)^2}{4(b - \epsilon)},
\]

and \(0 < \epsilon < 1 \). Then \(\gamma_{ij}(\cdot) \) is given by

\[
\gamma_{ij}(r) = \sqrt{\frac{k\rho}{(k/2 + \epsilon)}} r,
\tag{34}
\]

where \(\kappa > 1 \). Since \(C = I, \pi(\cdot) = \gamma(\cdot) \). Therefore, for any finite number \(k > 0 \), setting \(\kappa \) sufficiently close to 1, \(\pi(r) < r \) holds for all \(r > 0 \). Furthermore, for \(\epsilon = 0.01 \), the minimum \(\eta \) satisfying \(H(\tilde{x}_i) \geq 0 \) is given by \(\eta = 39.4 \) and \(\rho(\cdot) \) is the identity map. So the bounded set is given by

\[
\Omega = \{ \tilde{x}_i \in \mathbb{R}^3 ||\tilde{x}_i|| \leq 39.4 \}
\tag{35}
\]

and each trajectory \(x_i(t) \) converges to the set \(\Omega \). A graphical representation of the bounds is given in Figure 3. The ball represents the computed bounds from eq. (35).

![Figure 3: Estimated bounds on the trajectories of the coupled Lorenz system](image)
Using the obtained bounds, we check the synchronization condition. To reduce computation, the estimated bounds are approximated by a cube and the synchronization error dynamics is rewritten by the following polytopic linear differential inclusion, which consists of 8 vertex systems.

\[
\dot{e} \in \text{Co}\left\{A_{0}e(t) + A_{1}e(t - \tau), \ldots, A_{8}e(t) + A_{1}e(t - \tau)\right\}
\]

Applying Theorem 4, we can obtain the stability region as shown in Figure 4.

Setting \(k = 30\) and \(\tau = 0.01\), the LMI condition holds for all \(x_1 \in \Omega\). Figure 5 shows that the norm of \(e(t)\) converges to zero and synchronization is achieved, and Figure 6 shows that the coupled systems behave chaotically under synchronization.

5. Conclusion

In this paper, we have considered a sufficient condition for synchronization in an unidirectional ring network of \(N\) chaotic systems with time-delay coupling. For the system, we derived a condition for the boundedness of the strictly semi-dissipative systems by the small-gain theorem. Then, for the coupled systems in an unidirectional ring network, we derived sufficient conditions for synchronization of the systems by the Lyapunov-Krasovskii theorem.

Acknowledgement

This work was supported by the Japan Society for the Promotion of Science (JSPS) Grant-in-Aid for Scientific Research (No. 18560441).

References