Predicting product performance limits for polymers

Tom A.P. Engels, Leon E. Govaert and Han E.H. Meijer
Dutch Polymer Institute (DPI), Section Materials Technology (MaTe), Eindhoven University of Technology

Introduction
An important question in polymer engineering practice is what are the limits to the yield stress for safe usage. The lower limit follows from the time a product must bear a given load, whereas the upper limit from the mode of failure: ductile or brittle. Here we present an engineering approach, based on constitutive considerations and sound knowledge of the materials intrinsic behavior, to answer this question.

Relation between aging and embrittlement
From literature it is known that ductile polycarbonate becomes brittle after prolonged exposure to high temperatures [1]. The transition from ductile to brittle failure is considered to be the result of exceeding a critical hydrostatic stress [2]. It is also known that exposing amorphous polymers to high temperatures (below \(T_g\)) lead to an increase in the yield stress. Therefore it can be hypothesized that the maximum hydrostatic stress occurring in a notched sample during impact testing increases with yield stress.

![Figure 1](image1.png)

Figure 1 Izod impact data on PC, taken from [1] (left); triaxial stress state leading to void formation (right)

The increase in yield stress with time was captured in previous work [3] by the following set of equations:

\[
\sigma_y(t) = c_0 + c_1 \cdot \log(t_{eff} + t_0)
\]

\[
t_{eff} = \int_0^t a^-1(T(\xi))d\xi
\]

\[
a_T(T) = \exp\left(\frac{\Delta U}{R}\left(\frac{1}{T} - \frac{1}{T_{ref}}\right)\right)
\]

which were obtained from Time-Temperature-Superposition (TTS) of yield stresses measured at various annealing times and temperatures [3], as can be seen in Figure 2.

![Figure 2](image2.png)

Figure 2 Annealing data and mastercurve constructed thereof.

Defining a critical yield stress
Qualitative FEM analysis of 3D notched tensile bars showed that the maximum hydrostatic stress found in a sample is linear proportional to the yield stress of the material.

![Figure 3](image3.png)

Figure 3 proportionality between yield stress and maximum hydrostatic stress.

This proportionality suggests that the critical hydrostatic stress exceeded upon passing the ductile-to-brittle transition corresponds to a critical yield stress. Translation of the experimentally observed ductile-to-brittle transition times (fig 1) to yield stresses indeed lead to a constant critical yield stress, \(\sigma_{DB}\). This critical yield stress can be seen as an upper limit to an application window. A lower limit can be derived from the minimum time-to-failure a product must have under a certain static- or dynamic loading condition, \(\sigma_{ttf}\) [4].

![Figure 4](image4.png)

Figure 4 translated critical yield stresses (left); application window (right)

Conclusions
We have shown that knowledge gained by constitutive modelling in combination with good insight into the intrinsic behavior can lead to the definition of an application window for glassy polymers.

References:


PO Box 513, 5600 MB Eindhoven, the Netherlands