Adaptive Mesh Refinement Techniques For Spectral Elements

I. Barosan, P.D. Anderson, F.N. van de Vosse, H.E.H. Meijer
Eindhoven University of Technology, Faculty of Mechanical Engineering, Section Materials Technology, P.O. Box 513, 5600 MB Eindhoven, the Netherlands

Introduction
Spectral element methods are weighted residual techniques for the numerical solution of partial differential equations. For the development of adaptive spectral element techniques we need two key ingredients: a non-conforming discretization and single mesh a posteriori error estimators [1,2].

Non-Conforming Discretization
The extension to the original spectral element method, the Mortar Element Method, introduces the constrained approximation idea. We minimize the difference in function values across each non-conforming interface (see Figure 1, right) to make the basis as continuous as possible. We enforce the weighted residual equation:

\[\int_{\Gamma_i} (u - v) \psi \, ds = 0, \quad \forall \psi \in P_{N-2}(\Gamma_i) \]

where \(u \) and \(v \) are two functions that we would like to be continuous, and \(\psi \) is the weight to perform the minimization.

Error Estimators
The error estimates are single mesh a posteriori [2] local per element error estimates consisting of:

- the integration to infinity of the least squares best fit extrapolated Legendre coefficients, representing the norm of the error due to truncation, \(\| u - \Pi_h \tilde{u} \| \)
- the norms of the error due to approximating the exact coefficients numerically by quadrature, or \(\| u_h - \Pi_h \tilde{u} \| \)

Figure 1 (left) The approximation error contributions; (right) A non-conforming grid, \(v \) represents the mortar(non-conform edge) endpoints, \(\gamma_i \) are the mortars.

Implementation-2D
The mortar spectral element method has been implemented using a combination of FORTRAN, C and C++. Figure 2 illustrates the architecture of the implementation, where VDB is the voxel data base that keeps the geometric positions of the non-conforming mesh.

Results
We consider the unsteady rotation of a Gaussian hill described by the convection equation in two dimensions with domain \(\Omega = [-1, 1]^2 \):

\[\partial c + u \frac{\partial c}{\partial x} + v \frac{\partial c}{\partial y} = 0 \]

where \(u = -\omega y, v = \omega x, \omega = 2\pi \) (See Figure 3).

Figure 2 The architecture of the mortar implementation.

Adaptation based on the local Legendre spectrum. From left to write: step 1 spectral mesh; step 50; step 100; step 190.

The next example is a Gaussian 2-d steady distribution on a uniform grid. We compare the relative errors for solving equation for the conforming and non-conforming case (see Figure 4):

\[\Delta u = (400^2 r^2 - 800)e^{-400r^2/2} \]

where \(r^2 = x^2 + y^2 \), on \([-0.5, 0.5]^2\).

Figure 4 From left to write: adaption based on the local Legendre spectrum, tolerance=0.4E-09; adaption based on solution gradient, tolerance=0.0096; conform, errors versus no.of mesh-points; non-conform, error versus no. of mesh points.

Conclusions
We have outlined the basic of the implementation of an adaptive spectral method. The mortar discretizations represent a significant advance for spectral element methods. The combination of the nonconforming formulation with the error estimators represent the basis for a fully adaptive method.

References:

PO Box 513, 5600 MB Eindhoven, the Netherlands