Robust Impulsive Control of Motion Systems with Uncertain Friction

Technical Report DC2010.031

N. van de Wouw*, R.I. Leine‡

* Department of Mechanical Engineering,
Eindhoven University of Technology,
P.O. Box 513, 5600 MB Eindhoven,
The Netherlands,
N.v.d.wouw@tue.nl

‡ Institute of Mechanical Systems,
Department of Mechanical and Process Engineering,
ETH Zurich, CH-8092 Zürich, Switzerland
remco.leine@imes.mavt.ethz.ch

Abstract

In this paper, we consider the robust set-point stabilisation problem for motion systems subject to friction. Robustness aspects are particularly relevant in practice, where uncertainties in the friction model are unavoidable. We propose an impulsive feedback control design that robustly stabilises the set-point for a class of position-, velocity- and time-dependent friction laws with uncertainty. Moreover, it is shown that this control strategy guarantees the finite-time convergence to the set-point which is a favourable characteristic of the resulting closed loop from a transient performance perspective. The results are illustrated by means of a representative motion control example.

Key words: Robust Stabilisation, Impulsive Control, Friction, Motion Control.

1 Introduction

In this paper, we consider the robust set-point stabilisation problem for motion control systems with uncertain friction using an impulsive control strategy. It is well known that controlled motion systems with friction exhibit many undesirable effects such as stick-slip limit cycling, large settling times and non-zero steady-state errors, see e.g. [3, 4, 6, 7, 11, 21, 23, 27]. In the literature many different approaches towards the control of motion systems with friction have been proposed, such as PID control design, friction compensation, dithering-based approaches, adaptive techniques and impulsive control strategies. As shown e.g. in [3, 11], PID control techniques may suffer from an instability phenomenon known as hunting limit cycling. Many friction compensation approaches are available in the literature (see, for example, [3, 7, 11, 17, 21, 23, 27]) and have successfully been applied in practice, although it is widely recognised that the undercompensation and overcompensation of friction (due to inevitable friction modelling errors) may lead to non-zero steady-state errors and limit cycling [2, 26, 27]. Examples of adaptive compensation approaches are an adaptive friction compensation strategy reported in [25] and a model reference adaptive control scheme proposed in [30]. Dithering-based approaches, see e.g. [3, 15, 16, 31], aim at smoothing the discontinuity induced by (Coulomb) friction by the introduction of high-frequency excitations and thereby aim to avoid non-zero steady-state errors. The basic idea behind impulsive control strategies is the introduction of controlled impulsive forces when the system gets stuck at a non-zero steady-state error (due the stiction effect of friction), see e.g. [3,4,10,12–14,18,19,24,28,32–34]. One of the key practical problems faced in any of those ‘friction-beating’ strategies is the fact that friction is a phenomenon which is particularly hard to model accurately, especially due to e.g. changing environmental conditions such as lubrication conditions, temperature, wear, humidity.
etc. [3, 7, 23]. It is therefore of the utmost importance to develop stabilising controllers that are robust against uncertainties in the friction.

Here, we propose an impulsive feedback control strategy which guarantees the robust stability of the set-point in the face of frictional uncertainties, where we consider a large class of position-dependent, velocity-dependent, and time-varying friction models. The practical feasibility of impulsive force manipulation for the positioning of motion control systems has been illustrated in [10, 12–14, 18, 28, 32, 33]. Moreover, different impulsive feedback control strategies have been proposed in [18, 19, 24, 32]. However, rigorous stability analyses of the closed-loop system are rare, especially when accounting for uncertainties in the friction model. A notable exception is the recent work in [24] in which an impulsive feedback law similar to the one proposed in this paper has been studied. The common idea behind this impulsive control law is that, when the system reaches the stick phase at a non-zero regulation error, an impulsive force is applied, which kicks the system out of the stick phase and whose magnitude is dependent on the positioning error. The current work differs from and extends the work in [24] in the following ways. Firstly, in this paper we provide a proof for the robust set-point stability for a class of set-valued Coulomb friction models where the friction coefficient may be position-dependent, velocity-dependent and time-dependent, whereas in [24] only a stability analysis for uncertain, but constant, friction coefficients is given. Given the fact that position-dependencies, velocity-dependencies (think of e.g. the Strubeck effect) and time-dependent frictional characteristics (due to e.g. changing temperature, humidity or lubrication conditions) are always present in practice, such an extension is very relevant for applications. Secondly, in [24] a combination of an impulsive controller with a smooth linear position-error feedback controller is considered. In the current work, we consider an impulsive controller in combination with a more general linear state-feedback controller. As also stated in [24], such an extension is highly desirable from a performance perspective. Finally, in the current paper we provide a proof for the finite-time stability of the set-point, as opposed to mere asymptotic stability in [24].

Resuming, the main contributions of the current paper are as follows. Firstly, we propose an impulsive feedback control design for a motion control system consisting of a controlled inertia subject to friction modelled by a general class of set-valued, position-dependent, velocity-dependent, and time-varying friction models. Secondly, a stability analysis is performed to guarantee the robust stability of the set-point in the face of uncertainties in the friction. Thirdly, we show that the stability achieved is asymptotic (i.e. attractivity in finite time to the set-point is guaranteed).

The outline of the paper is as follows. In Section 2, the control problem tackled in this paper is formalised. In Section 3, the impulsive control design is introduced. The robust (finite-time) stability analysis of the impulsive closed-loop system is presented in Section 4. The effectiveness of the control design and its robustness properties are illustrated by means of an example in Section 5. Finally, concluding remarks are presented in Section 6. Some of the proofs are collected in the appendix.

2 Control Problem Formulation

Consider a one-degree-of-freedom mechanical system consisting of an inertia with mass \(m \) which is in frictional contact with a support, being a flat horizontal plane (see Figure 1). We denote the position of the inertia by \(z \) and its velocity by \(\dot{z} \) whenever it exists. A friction force \(F_f \) acts between the mass and the support under the influence of a normal force \(mg \), where \(g \) denotes the gravitational acceleration. The control input consists of a finite control force \(u \) and an impulsive control force \(U \). The dynamics of the control system is described by the equation of motion (the balance of linear momentum)

\[
m\ddot{z} = u + F_f(z, \dot{z}, t)
\]

and the impact equation

\[
m(\dot{z}^+(t_j) - \dot{z}^-(t_j)) = U,
\]
which relates the difference between the post-impact velocity \(\dot{z}^+(t_j) \) and the pre-impact velocity \(\dot{z}^-(t_j) \) to the impulsive control force \(U \) at time \(t_j \). It is tacitly assumed that the impulsive force \(U \) is such that the velocity \(\dot{z}(t) \) is of locally bounded variation. A proof for the validity of this assumption can be found in Appendix A.

\[F_f(z, \dot{z}, t) \in -mg\mu(z, \dot{z}, t)\text{Sign}(\dot{z}), \]

where \(\text{Sign}(\cdot) \) denotes the set-valued sign function defined by

\[
\text{Sign}(y) = \begin{cases}
-1, & y < 0 \\
[-1, 1], & y = 0 \\
1, & y > 0
\end{cases}
\]

Moreover, \(\mu(z, \dot{z}, t) \) denotes the friction coefficient that may depend on \(z \) and \(\dot{z} \), which are both functions of time, and may also depend explicitly on time \(t \). Note that (3) represent a rather large class of friction models including possibly position-dependent friction, velocity-dependent effects, such as the Stribeck effect, and time-dependent friction (which can occur in practice due to changing temperature/humidity of the contact, wear or changing lubrication conditions). Moreover, (3) represents a set-valued friction model to account for the stiction effect induced by dry friction. Despite the fact that (3) represents a static friction model, the explicit time-dependency can also account for certain effects encountered in dynamic friction models. In the remainder of this paper, we adopt the following assumption on the friction coefficient.

Assumption 1

The friction coefficient \(\mu(z, \dot{z}, t) \) is lower bounded by \(\underline{\mu} \) and upper bounded by \(\overline{\mu} \), i.e. it holds that

\[
\underline{\mu} \leq \mu(z, \dot{z}, t) \leq \overline{\mu}, \quad \forall t, z, \dot{z} \in \mathbb{R},
\]

for some \(0 < \underline{\mu} \leq \overline{\mu} \).

In the remainder of this paper, we express the dynamics of the system in first-order form by using the state vector \(\mathbf{x} = [x_1 \ x_2]^T := [z \ \dot{z}]^T \). The impulsive and non-impulsive dynamics of the system can be represented by a (in general non-autonomous) first-order measure differential inclusion [1, 20, 22]:

\[
dx_1 = x_2 \ dt \\
\ dx_2 \in -g\mu(x_1, x_2, t)\text{Sign}(x_2) \ dt + \frac{1}{m} \ dp,
\]

where

\[
\frac{dp}{dt} = u \ dt + U \ d\eta
\]

is the differential measure of the control input, \(dt \) is the Lebesgue measure and \(d\eta \) is a differential atomic measure consisting of a sum of Dirac point measures [9, 20]. The decomposition of the
control force as in (7) implies that the differential measure \(\text{d}x \) of the state can be decomposed as follows \(\text{d}x = \dot{x} \text{d}t + (\dot{x}^+ - \dot{x}^-) \text{d}\eta \). Such a decomposition, implies that \(x(t) \) is a special function of locally bounded variation \([1]\). The state \(x(t) \) admits at each time-instant \(t \) a left and right limit \(x^- (t_j) = \lim_{t \uparrow t_j} x(t), \ x^+ (t_j) = \lim_{t \downarrow t_j} x(t) \), as \(x(t) \) is of (special) locally bounded variation. The time-evolution of \(x(t) \) is governed by the integration process \(x^+ (t_1) = x^- (t_0) + \int_{t_0, t_1} \text{d}x \), where \([t_0, t_1]\) denotes the compact time-interval between \(t_0 \) and \(t_1 \geq t_0 \).

Now let us state the control problem considered in this paper:

Problem 1

Design a control law for \(u \) and \(U \) for system (6), (7) such that \(x = 0 \) is a robustly globally uniformly attractively stable equilibrium point of the closed-loop system for a class of uncertain friction models of the form (3) satisfying Assumption 1.

The attraction in Problem 1 can be asymptotic or symptotic, with which we mean attraction to the equilibrium in infinite or finite time, respectively. The controller proposed in this paper will induce stability and finite-time attractivity, i.e. symptotic stability\(^1\).

3 Impulsive Feedback Control Design

In order to solve Problem 1, we adopt a proportional-derivative (state-)feedback control law for \(u \) in (7) of the form

\[
u(x_1, x_2) = -k_1 x_1 - k_2 x_2, \quad k_1, k_2 > 0, \tag{8}\]

together with an impulsive feedback control law for \(U \) in (7) of the form

\[
U(x_1, x_2^-) = \begin{cases}
k_3(x_1), & \text{if } (x_2^- = 0) \land (|x_1| \leq \frac{mg \eta}{k_1}) \\
0, & \text{else} \end{cases}, \tag{9}\]

where the constants \(k_1, k_2 \) and the function \(k_3(x_1) \) are to be designed. The resulting closed-loop dynamics can be formulated in terms of a measure differential inclusion:

\[
\begin{align*}
\text{d}x_1 &= x_2 \text{d}t \\
\text{d}x_2 &\in \left(\frac{k_1}{m} x_1 - \frac{k_2}{m} x_2 - g \mu(x_1, x_2, t) \text{Sign}(x_2) \right) \text{d}t + \frac{1}{m} U(x_1, x_2^-) \text{d}\eta. \tag{10}\end{align*}
\]

In between impulsive control actions, the non-impulsive dynamics is described by the differential inclusion

\[
\begin{align*}
\dot{x}_1 &= x_2 \\
\dot{x}_2 &\in - \frac{k_1}{m} x_1 - \frac{k_2}{m} x_2 - g \mu(x_1, x_2, t) \text{Sign}(x_2). \tag{11}\end{align*}
\]

The state of the system may jump at impulsive time-instants \(t_j \) for which \(U \neq 0 \), i.e. for time instants at which

\[
x_2^- (t_j) = 0, \quad |x_1 (t_j)| \leq \frac{mg \eta}{k_1}, \tag{12}\]

according to the state reset map

\[
\begin{align*}
x_1^+ (t_j) &= x_1^- (t_j) \\
x_2^+ (t_j) &= x_2^- (t_j) + \frac{k_3(x_1^- (t_j))}{m}. \tag{13}\end{align*}
\]

In the remainder we will denote \(x_1(t_j) = x_1^- (t_j) = x_1^+ (t_j) \) since the position \(x_1(t) = z(t) \) is an absolutely continuous function of time.

\(^1\)For a definition of symptotic stability we refer to e.g. [20]
3.1 Analysis of the Non-impulsive Closed-loop Dynamics

In this section, we study properties of the solutions of the non-impulsive closed-loop dynamics described by the differential inclusion (11) that are important for the stability analysis pursued in Section 4.

If \(x_2(t) \neq 0 \), then the differential inclusion (11) reduces to the nonlinear differential equation

\[
\dot{x}_1 = x_2 \\
\dot{x}_2 = -\frac{k_1}{m}x_1 - \frac{k_2}{m}x_2 \pm g\mu(x_1, x_2, t).
\]

(14)

In the following we will regard the nonlinear term \(g\mu(x_1, x_2, t) \) to be a time-varying input \(g\mu(t) \) with \(\mu(t) := \mu(x_1(t), x_2(t), t) \), which obeys Assumption 1, i.e. \(\underline{\mu} \leq \mu(t) \leq \bar{\mu} \forall t \). Hence, the closed-loop non-impulsive dynamics for \(x_2(t) \neq 0 \) is described by the linear differential equation

\[
\dot{x}_1 = x_2 \\
\dot{x}_2 = -\omega_n^2x_1 - 2\zeta\omega_nx_2 + f(t),
\]

with time-varying input \(f(t) := -g\mu(t)\text{Sign}(x_2(t)) \), undamped eigenfrequency \(\omega_n = \sqrt{k_1/m} \), and damping ratio \(\zeta = \frac{k_2}{2\sqrt{k_1m}} > 0 \) and \(g\mu \leq f(t) \leq g\bar{\mu} \forall t \). Consider the case that the controller parameters \(k_1, k_2 \) are designed such that \(\zeta > 1 \). Denote \(\lambda_1 := -\omega_n\zeta - \omega_n\sqrt{\omega_n^2 - 1} \), \(\lambda_2 := -\omega_n\zeta + \omega_n\sqrt{\omega_n^2 - 1} \), and note that \(\lambda_1\lambda_2 = \omega_n^2, \lambda_1 + \lambda_2 = -2\zeta\omega_n \) and \(\lambda_2 < \lambda_1 < 0 \). We denote the arbitrary initial condition as

\[
x_1(t_0) = x_{10}, \quad x_2(t_0) = x_{20}.
\]

(16)

Let \((x_1(t), x_2(t)) \) denote the solution of the initial value problem (15), (16) on a time interval for which \(x_2(t) \) does not change sign. Furthermore, let \((\underline{x}_1(t), \underline{x}_2(t)) \) denote the solution of the initial value problem (15), (16) for \(\mu(t) = \underline{\mu}, \forall t \) and \((\overline{x}_1(t), \overline{x}_2(t)) \) for \(\mu(t) = \bar{\mu}, \forall t \). The following proposition explicates that \(\underline{x}_i(t) \) and \(\overline{x}_i(t) \) characterise bounds on \(x_i(t) \) \((i = 1, 2) \). Herein, we use the following definitions:

\[
\underline{\zeta} := \frac{mg\mu}{k_1} = \frac{g\mu}{\lambda_1\lambda_2}, \quad \overline{\zeta} := \frac{mg\bar{\mu}}{k_1} = \frac{g\bar{\mu}}{\lambda_1\lambda_2}.
\]

(17)

Proposition 1

The solutions \((\underline{x}_1(t), \underline{x}_2(t)) \) and \((\overline{x}_1(t), \overline{x}_2(t)) \) satisfy

\[
\underline{x}_1(t) = s_1(t - t_0)x_{10} + s_2(t - t_0)x_{20} - \underline{\zeta}(1 - s_1(t - t_0)), \\
\underline{x}_2(t) = \dot{s}_1(t - t_0)x_{10} + \dot{s}_2(t - t_0)x_{20} - \lambda_1\lambda_2 s_2(t - t_0),
\]

(18)

and

\[
\overline{x}_1(t) = s_1(t - t_0)x_{10} + s_2(t - t_0)x_{20} - \overline{\zeta}(1 - s_1(t - t_0)), \\
\overline{x}_2(t) = \dot{s}_1(t - t_0)x_{10} + \dot{s}_2(t - t_0)x_{20} - \lambda_1\lambda_2 \overline{s}_2(t - t_0)
\]

(19)

with the definitions for \(\underline{\zeta} \) and \(\overline{\zeta} \) as in (17) and \(s_1(t), s_2(t) \) defined by

\[
s_1(t) = \frac{\lambda_2}{\lambda_2 - \lambda_1}e^{\lambda_1 t} - \frac{\lambda_1}{\lambda_2 - \lambda_1}e^{\lambda_2 t}, \quad \text{and} \quad s_2(t) = \frac{1}{\lambda_2 - \lambda_1}(-e^{\lambda_1 t} + e^{\lambda_2 t}).
\]

(20)

Moreover, the solution \((x_1(t), x_2(t)) \) is lower and upper bounded by the solutions \((\underline{x}_1(t), \underline{x}_2(t)) \) and \((\overline{x}_1(t), \overline{x}_2(t)) \) according to

\[
x_2 > 0:\quad \underline{x}_1(t) \leq x_1(t) \leq \overline{x}_1(t), \quad \underline{x}_2(t) \leq x_2(t) \leq \overline{x}_2(t) \quad \text{for} \quad 0 \leq t - t_0 \leq \frac{1}{\lambda_2 - \lambda_1}\ln\frac{\lambda_1}{\lambda_2},
\]

\[
x_2 < 0:\quad \underline{x}_1(t) \geq x_1(t) \geq \overline{x}_1(t), \quad \underline{x}_2(t) \geq x_2(t) \geq \overline{x}_2(t) \quad \text{for} \quad 0 \leq t - t_0 \leq \frac{1}{\lambda_2 - \lambda_1}\ln\frac{\lambda_1}{\lambda_2}
\]

(21)

Proof The proof is given in Appendix B. □
3.2 Impulsive Controller Design

Let us first explain the rationale behind the design of the controller (7), (8), (9). Hereafter, consider the case that \(\mu(x_1, x_2, t) = \mu \), with \(\mu \) a constant, and consider the system without the impulsive part of the controller (i.e. \(k_3(x_1) = 0 \) in (9)). In this case the closed-loop system is a PD-controlled inertia with Coulomb friction which exhibits an equilibrium set defined by \(\{ x \in \mathbb{R}^2 \mid |x_1| \leq \frac{mg\mu}{k_1} \wedge x_2 = 0 \} \). Clearly, the closed-loop system will then ultimately converge to the equilibrium set and an undesirable non-zero steady-state error will in general result. This attraction can either occur in a finite time or the solution can approach the equilibrium set asymptotically \([5, 8]\).

Note that for (non-constant) friction coefficients \(\mu(x_1, x_2, t) \) satisfying Assumption 1, the closed-loop system without impulsive control will exhibit a time-varying stick set \(\mathcal{E}(t) \) that satisfies \(\mathcal{L} \subseteq \mathcal{E}(t) \subseteq \mathcal{F} \) \(\forall t \), where \(\mathcal{L} = \{ x \in \mathbb{R}^2 \mid |x_1| \leq \frac{mg\mu}{k_1} \wedge x_2 = 0 \} \), \(\mathcal{F} = \{ x \in \mathbb{R}^2 \mid |x_1| \leq \frac{mg\mu}{k_1} \wedge x_2 = 0 \} \) are the minimal and maximal stick sets, respectively. A point \(x^* \in \mathcal{L} \) remains stationary for all times and is therefore an equilibrium point of the PD-controlled system. The time-varying nature of the stick set \(\mathcal{E}(t) \) may destroy the stationarity of points in \(\mathcal{E}(t) \setminus \mathcal{L} \). The set \(\mathcal{E}(t) \) therefore denotes the stick set at time \(t \) and not an equilibrium set. The basic idea behind the impulsive controller (7), (8), (9) is to apply an impulsive control force when the state of the system enters the maximal stick-set \(\mathcal{F} \). Loosely speaking, the impulsive force kicks the system out of the stick phase allowing it to further converge (closer) to the set-point. Since the friction law is uncertain also the stick set \(\mathcal{E}(t) \) is not known a priori and the closed-loop system without impulsive control may even get stuck at zero velocity temporarily when \(\mu(z, \dot{z}, t) \) is indeed time-dependent. To enforce that the system never remains at zero velocity for more than an isolated time instant (i.e. for a time interval of positive Lebesgue measure), we design the impulsive controller in (9) such that an impulsive force is applied whenever \(x^-(t) \in \mathcal{F} \). Clearly, the impulsive part of the controller prevents the existence of an equilibrium set (and the occurrence of non-zero steady-state errors). However, energy will be added to the system at every time-instant on which an impulsive control action is applied. In this paper, we will provide design rules for \(k_1, k_2 \) and \(k_3(x_1) \) such that more energy is dissipated (through the derivative action of the controller and the friction) in a time-interval between two impulsive control actions than is provided by the impulsive control action preceding this time-interval.

In order to design the impulsive part of the controller \(k_3(x_1) \), we take the following perspective. Consider a time instant \(t_j \) for which \(x^-(t_j) \in \mathcal{F} \), i.e. an impulsive control action \(U = k_3(x_1(t_j)) \) will be induced by the controller (7) at \(t = t_j \). Note that an impulsive control force results only in a jump of the velocity \(x_2(t) \) whereas the position \(x_1(t) \) is absolutely continuous, as formalised in (13). The impulsive control action will cause \(x^+(t_j) \notin \mathcal{F} \). Let \(t_{j+1} \) denote the first time-instant for which \(x(t) \) reaches again \(\mathcal{F} \), i.e. \(x_2(t_{j+1}) = 0 \). Now, we will design \(k_3(x_1) \) in (9) such that the velocity will be reset to such a post-impact velocity \(x_2^+(t_j) \) that the solution to (11), with \(\mu(z, \dot{z}, t) = \mu \) and initial condition \((x_1(t_j), x_2^+(t_j)) \), will converge to the origin in finite time \(t_{j+1} \) without any impulses and/or velocity reversals occurring in the time-interval \((t_j, t_{j+1}) \). So, the (impulsive) controller is designed such that it stabilises the setpoint in finite time with only one impulsive action when the friction coefficient equals its lower bound. The impulsive controller design will satisfy the condition

\[
k_3(y) = \begin{cases}
< 0, & y > 0 \\
= 0, & y = 0 \\
> 0, & y < 0
\end{cases}
\]

in other words, \(x = 0 \) is an equilibrium point of the controlled system and the impulsive control force \(U \) is opposite to the position error \(x_1(t_j) \), which appeals to our intuition. In Section 4, we will show that this control design also robustly stabilises the closed-loop system with a time-varying and state-dependent friction coefficient \(\mu = \mu(x_1(t), x_2(t), t) \) satisfying Assumption 1.

Let us now design the impulsive control law \(k_3(x_1) \) that has the above properties. Hereafter, consider the case that \(x_1(t_j) < 0 \) (the case \(x_1(t_j) > 0 \) can be studied in an analogous fashion). This implies that \(k_3(x_1(t_j)) > 0 \), see (22), and \(x_2^2(t_j) > 0 \). On the non-impulsive open time-
interval \((t_j, t_{j+1})\), the dynamics of (6) for \(\mu(x_1, x_2, t) = \mu\) is therefore governed by the differential equation (15) with \(\zeta > 1\) and \(f(t) = f_{\text{const}} = -g\mu\), i.e.

\[
\begin{align*}
\dot{x}_1(t) &= x_2(t) \\
\dot{x}_2(t) &= -\omega^2 x_1(t) - 2\zeta \omega x_2(t) - g\mu.
\end{align*}
\tag{23}
\]

We seek a solution curve of (23) with the boundary conditions \(\mathbf{x}^+(t_j) = \begin{bmatrix} x_1(t_j) & x_2^+(t_j) \end{bmatrix}^T\) and \(\mathbf{x}^-(t_{j+1}) = \begin{bmatrix} 0 & 0 \end{bmatrix}^T\). The initial position \(x_1(t_j)\) and initial time \(t_j\) are \textit{a priori} known. The initial velocity \(x_2^+(t_j)\) as well as the end time \(t_{j+1} > t_j\) are yet unknown. We therefore have to solve a kind of mixed boundary value problem for the unknowns \(x_2^+(t_j)\) and \(t_{j+1}\). The boundary value problem can be solved in many different ways. The rationale behind the method which we propose here is to arrive at an algebraic equation for which we can prove the existence and uniqueness of the solution. We can express the solution for \(\mu(x_1, x_2, t) = \mu\) in closed form using the general solution (18) by taking \(t_{j+1} = t_0\) as reference time and \(x_{10} = \mathbf{x}_1(t_{j+1}) = 0\), \(x_{20} = \mathbf{x}_2(t_{j+1}) = 0\), which gives

\[
\begin{align*}
\mathbf{x}_1(t) &= \mathcal{C} \left(1 - s_1(t - t_{j+1}) \right) = \mathcal{C} \left(\frac{\lambda_2}{\lambda_2 - \lambda_1} e^{\lambda_1 (t - t_{j+1})} - \frac{\lambda_1}{\lambda_2 - \lambda_1} e^{\lambda_2 (t - t_{j+1})} - 1 \right), \\
\mathbf{x}_2(t) &= -\lambda_1 \lambda_2 \mathcal{C} s_2(t - t_{j+1}) = \mathcal{C} \frac{\lambda_1 \lambda_2}{\lambda_2 - \lambda_1} \left(e^{\lambda_1 (t - t_{j+1})} - e^{\lambda_2 (t - t_{j+1})} \right),
\end{align*}
\tag{24}
\]

with \(\mathcal{C}\) given by (17). Subsequently, using (24) we require that \(x_1(t)\) at time \(t_j\) equals the \textit{a priori} known initial position \(x_1(t_j)\). This yields a nonlinear real algebraic equation

\[f(t_{j+1}) = 0\tag{25}\]

for the unknown end time \(t_{j+1}\), where the function \(f(t)\) is given by

\[f(t) := \mathcal{C} \left(s_1(t_j - t) - 1 \right) - x_1(t_j) = \mathcal{C} \left(\frac{\lambda_2}{\lambda_2 - \lambda_1} e^{\lambda_1 (t_j - t)} - \frac{\lambda_1}{\lambda_2 - \lambda_1} e^{\lambda_2 (t_j - t)} - 1 \right) - x_1(t_j).\tag{26}\]

We can easily verify that \(f(t_j) = -x_1(t_j) > 0\) holds.

Let us now study the following questions for the system of equations (24), (25), (26):

- For which domain in \(x_1(t_j)\) does a solution pair \((t_{j+1}, x_2^+(t_j))\) exist (and can we show the uniqueness of this solution)?

- If a such solution pair exists, can we show that both the time lapse \(t_{j+1} - t_j\) and \(x_2^+(t_j)\) are bounded for bounded \(x_1(t_j)\) (i.e. the impulsive control law yields bounded impulses and the resulting flowing response of system (23) converges to the origin in finite time)?

In the following proposition, we propose the impulsive control law and show that it exhibits the above properties. Note that the impulsive control action \(k_3(x_1(t_j))\) can be computed from (13) using the fact that \(x_2^+(t_j) = 0\):

\[k_3(x_1(t_j)) = mx_2^+(t_j).
\tag{27}\]

Proposition 2

Consider the impulsive control law \(k_3(x_1(t_j))\) for a given \(x_1(t_j)\), with \(t_j\) arbitrary, defined by (27), where

1. \(t_{j+1}\) is the solution of (25), (26);

2. the value of \(x_2^+(t_j)\) is determined by the evaluation of \(\mathbf{x}_a(t)\), given by (24) at \(t = t_j\).
If $\zeta > 1$, then it holds that $k_3(x_1)$ is uniquely defined and bounded for all $(x_1, x_2) \in \mathbb{F}$.

Proof The proof is given in Appendix B. \[\square\]

Note that the impulsive control law (27) can be computed a priori given the plant properties, such as the mass m, the uncertainty bounds μ and γ on the friction coefficient, the gains k_1 and k_2 of the PD-controller and the gravitational acceleration g.

3.2.1 Characteristics of the impulsive control law

In this section, we further illuminate particular characteristics of the impulsive control law $k_3(x_1)$ designed above. These characteristics will be exploited in Section 4 to study the stability of the impulsive closed-loop system.

It holds that $x_+^2(t_j) = -f'(t_j+1)$ and we can therefore write $\frac{dx_+^2(t_j)}{dt_{j+1}} = -f''(t_j+1)$. Moreover, differentiation of the algebraic equation $f(t_{j+1}; x_1(t_j)) = 0$, in which with some abuse of notation we make explicit that τ also depends on $x_1(t_j)$, using $\partial f/\partial x_1(t_j) = -1$, yields

$$f'(t_{j+1}) \frac{dt_{j+1}}{x_1(t_j)} - dx_1(t_j) = 0 \quad \Rightarrow \quad \frac{dt_{j+1}}{dx_1(t_j)} = \frac{1}{f'(t_{j+1})}. \tag{28}$$

Consequently, the impulsive control law $k_3(x_1(t_j))$ has a slope given by

$$\frac{dk_3(x_1(t_j))}{dx_1(t_j)} = m \frac{dx_+^2(t_j)}{dx_1(t_j)} = m \frac{dx_+^2(t_j)}{dt_{j+1}} \frac{dt_{j+1}}{dx_1(t_j)} = -m \frac{f''(t_{j+1})}{f'(t_{j+1})}, \tag{29}$$

or, using $f'(t_{j+1}) = -x_+^2(t_j) = -k_3(x_1(t_j))/m$, by $k_3'(x_1(t_j)) = m^2 \frac{f''(t_{j+1})}{k_3'(x_1(t_j))}$. For $\zeta > 1$, it holds that $f''(t_{j+1}) \leq -\omega_n^2 - \lambda k_3' f'(t_{j+1})$ for all $t_{j+1} \geq t_j$. We therefore obtain the differential inequality

$$k_3'(y) \leq m\lambda_2 - \frac{\omega_n^2 m^2}{k_3(y)}, \tag{30}$$

on the domain $y < 0$ with the boundary condition $k_3(0) = 0$. The differential equation $h' = -a/h$ with $h(0) = 0$ has the solution $h(x) = \sqrt{-2ax}$ on the domain $x \leq 0$. The impulsive control law $k_3(y)$ is therefore bounded from below by

$$k_3(y) \geq \sqrt{-2\omega_n^2 m^2 y}, \quad y \leq 0, \tag{31}$$

as well as by $k_3(y) \geq m\lambda_2 y$, for $y \leq 0$. The symmetry of the problem implies the uneveness of $k_3(y)$, i.e. $k_3(y) = -k_3(-y)$, and we therefore obtain

$$k_3(y) \leq -\sqrt{2\omega_n^2 m^2 y}, \quad y \geq 0. \tag{32}$$

Moreover, for small values of $|y|$ the impulsive control law $k_3(y)$ can be well approximated by

$$k_{3\text{approx}}(y) = -\text{sign}(y)\sqrt{2\omega_n^2 m^2 |y|} \tag{33}$$

because if $y \uparrow 0$ then $t_{j+1} \downarrow t_j$ and $f''(t_{j+1}) \downarrow -\omega_n^2$. Hence if $\zeta > 1$, then the slope $k_3'(y)$ is negative for all $y \neq 0$, but is tending to minus infinity for $y \to 0$. The graph of the impulsive control law $k_3(y)$, which is a continuous uneven function, is therefore strictly decreasing for $\zeta > 1$ and is locally similar to the square-root function $k_{3\text{approx}}(y)$ around the origin. A schematic representation of the impulsive control law $k_3(x_1)$ for $\zeta > 1$ is given in Figure 2, where we recall that it is only applied for $x_1 \in \mathbb{F}^+ = \{x_1 \in \mathbb{R} \mid |x_1| \leq \frac{\omega_n}{k_3}\}$ (the solid part of the graph).

The characteristics of the impulsive control explicated in (31), (32) and (33) will be used in Proposition 6, which, in turn, plays a key role in the stability analysis in Section 4.
3.3 Switching Impulsive Controller Design

We will consider the following switching impulsive control law consisting of three phases:

1. The system starts at an arbitrary initial condition \(x(t_0) \in \mathbb{R}^2 \). The parameters \(k_1 \) and \(k_2 \) of the PD-controller are chosen such that the closed loop system without friction is an undercritically damped oscillator (i.e. \(\zeta < 1 \)). We assume that the solution \(x(t) \) is attracted in a finite time (denoted by \(t_1 \)) to \(\mathcal{E} \). In the next section, we will formalise this assumption and provide sufficient conditions under which this assumption is satisfied, which will explicate the motivation for the choice of \(\zeta < 1 \) in ensuring finite-time attractivity to the stick-set.

2. The impulsive controller turns on at \(t = t_1 \geq t_0 \) when \(x(t_1) \in \mathcal{E} \) and the \(k_2 \) parameter of the PD controller is increased, such that \(\zeta > 1 \), which is desirable from a transient performance perspective. Moreover, certain key characteristics of the impulsive control law, see Proposition 2 and Section 3.2.1, have been proven for \(\zeta > 1 \). The impulsive controller induces a velocity jump to \(x^+_2(t_1) \) such that the following non-impulsive motion results in

 (a) \(x^-(t_2) = 0 \) if \(\mu(t) = \mu \), which defines the value of \(x^+_2(t_1) \) and therefore the impulsive control action \(k_3(x_1(t_1)) \), see Section 3.2,

 (b) \(x^-(t_2) \in \overline{\mathcal{E}} \) for arbitrary \(\mu(t) \), which puts an additional condition on \(\overline{\mathcal{E}} \) and \(\mu \), see Assumption 3 in Section 4.

We will prove that \(t_2 \) is finite, see Proposition 7 in Section 4.

3. The impulsive control is applied at each time-instant \(t_j \) for which \(x^-(t_j) \in \overline{\mathcal{E}} \). It holds that \(x^-(t_2) \in \overline{\mathcal{E}} \) and the control is such that \(x^-(t_j) \in \overline{\mathcal{E}} \), \(j = 2, 3, \ldots \). Infinitely many impulsive actions will occur in a finite time, i.e. \(t_\infty < \infty \), with \(x(t_\infty) = 0 \), see Proposition 10 in Section 4.

The resulting switching impulsive control law is now given by (7), (9) and

\[
\begin{align*}
 k_2(t) = \begin{cases}
 k_{21} & t_0 \leq t < t_1 \\
 k_{22} & t \geq t_1
 \end{cases},
\end{align*}
\]

such that \(k_1 > 0, 0 < \frac{k_{21}}{2\sqrt{k_1 \mu}} < 1 \) and \(\frac{k_{22}}{2\sqrt{k_1 \mu}} > 1 \), and where \(t_1 \) is the smallest time instant \(t_1 \geq t_0 \) such that \(x^-(t_1) \in \overline{\mathcal{E}} \).
4 Stability Analysis

In the previous section, we have introduced the switching impulsive control design. In this section, we will show that this control design asymptotically (finite-time) stabilises the set-point $x = 0$. Consider the system (6) satisfying Assumption 1 and the impulsive feedback controller (7), (9), (34) with $k_3(x_1)$ satisfying (27) and $x_2^+(t_j)$ fulfilling the mixed boundary value problem (see point 2 in Proposition 2). In the following we will call this the resulting closed-loop system. We will prove that $x = 0$ is a globally uniformly asymptotically stable equilibrium point of the resulting closed-loop system.

Let us first prove boundedness of solutions.

Proposition 3
The solutions of the resulting closed-loop system (6), (7), (9), (34), satisfying Assumption 1, are bounded.

Proof The proof is given in Appendix B.

Secondly, let us assume that solutions which start in $x(t_0) \in \mathbb{R}^2$ reach the compact set \mathcal{E} in a finite time t_1.

Assumption 2
Solutions of the resulting closed-loop system (6), (7), (9), (34), satisfying Assumption 1, which start in $x(t_0) \in \mathbb{R}^2$ reach the compact set \mathcal{E} in a finite time t_1 (i.e. $t_1 - t_0 < \infty$).

We now formulate two sufficient conditions for Assumption 2 in the following two propositions.

Proposition 4
Suppose the friction coefficient $\mu(x_1, x_2, t)$ satisfies Assumption 1. If the time-evolution of the friction coefficient $\mu(t) = \mu(x_1(t), x_2(t), t)$ along solutions of the closed-loop system (6), (7), (34), with $U = 0$, is piecewise constant, such that it is constant during each time-interval for which $x_2(t)$ does not change sign, and the linear part of the closed loop system is undercritically damped (i.e. $\zeta < 1$), then the stick set \mathcal{E} is reached in finite time for any initial condition $x(t_0) \in \mathbb{R}^2$.

Proof In [8], Theorem 2(iii), finite-time attraction is proven for a constant value of $\mu(t)$. The proof can easily be extended to a piecewise constant $\mu(t)$ as in the proposition.

Proposition 5
Consider the closed-loop system (6), (7), (34), with $U = 0$. Consider a velocity-dependent friction laws satisfying the decomposition $F_f(x_2) \in -mg \mu \text{Sign}(x_2) - F_{sm}(x_2)$ instead of the friction law in (3), where μ is constant and satisfies Assumption 1, $F_{sm}() \in C^1$ and $F_f(x_2)x_2 \leq 0$, $\forall x_2$. If

$$k_{21} + \frac{\partial F_{sm}(0)}{\partial x_2} < 2\sqrt{mk_{1}},$$

i.e. the linearisation of the continuous part of the closed-loop dynamics (around the origin) is undercritically damped, then the stick set \mathcal{E} is reached in finite time for any initial condition $x(t_0) \in \mathbb{R}^2$.

Proof Under the conditions in the proposition, Theorem 2 in [8] can be directly employed to provide the proof.

Remark 1
Given the rather generic class of friction laws considered in this paper, the condition on the friction law in Propositions 4 and 5 can be considered to be restrictive. Note, however, that (possibly asymmetric) Coulomb friction laws with uncertain (though constant) friction coefficient form a practically relevant subclass of friction models that satisfies the conditions in Proposition 4.
and that the friction law in Proposition 5 represents a general class of discontinuous, velocity-dependent friction laws (possibly including the Stribeck effect). Moreover, the formulation of less stringent conditions for the finite-time convergence to the stickset for the case of generic friction coefficients \(\mu(x_1, x_2, t) \) is, to the best the authors’ knowledge, an open problem. Namely, it has been shown in \([5, 8]\) that, even for constant \(\mu \), manifolds in state space may exist for which solutions only converge to the equilibrium set asymptotically (not in finite time). More precisely, in \([8]\), it is shown that under the conditions in Proposition 5 with \(k_{21} + \frac{\partial F}{\partial x_2}(0) \geq 2 \sqrt{m k_1} \), solutions exist that reach the equilibrium set in infinite time. Based on Propositions 4 and 5 and the work in \([8, 5]\), we conclude that the fact that the linearised dynamics is undercritically damped appears to be an essential condition for the finite-time attractivity of the equilibrium set. This is the reason for designing the switching controller as in (34).

We do stress here that, although more generic sufficient conditions for Assumption 2 are currently lacking, it has been widely observed in the literature (both on a model level as in experiments), see e.g. \([3, 21, 27]\), that solutions in practice generally do converge to the stickset in finite time. In fact, this finite-time convergence to the stick set is directly related to the problems of stick-slip limit cycling and non-zero steady-state errors, which we are aiming to tackle with the control design in this paper and form the core motivation for our work. Hence, from a practical point of view, Assumption 2 is a very natural one.

Remark 2

Let us consider an alternative tuning for the switching state-feedback controller in (34) such that also the position feedback gain is switched according to \(k_1 = 0 \), for \(t_0 \leq t \leq t_1 \), \(k_1 \leq \frac{m \pi}{\pi x_1(t)} \), for \(t \geq t_1 \) and the velocity feedback gain \(k_2 > 0 \) is taken constant and such that \(\zeta > 1 \) for \(t \geq t_1 \). In this case it is straightforward to show that for general \(\mu(x_1, x_2, t) \), satisfying Assumption 1, Assumption 2 is satisfied. Still, we prefer to use the design proposed in (34) since the above alternative control design leads to position feedback gains dependent on the initial conditions, which may lead to unpredictable/inferior transient performance.

Using the arguments and assumptions above we can now consider initial conditions (at \(t = t_1 \)) satisfying \(x^-(t_1) = [x_1(t_1) x_2(t_1)]^T \in \mathcal{E}^{-} := \{ x \in \mathcal{E} \mid x_1 < 0 \} \). The case in which \(x_1 > 0 \) can be treated in an entirely analogous fashion. Now, we consider a sequence of time instants \(t_j, j \geq 1 \), such that \(x^-(t_j) \in \mathcal{E}^- \) and \(x(t) \notin \mathcal{E}^- \) for \(t \neq t_j \). Clearly, due to the design of the impulsive part of the control law in (9), an impulse will now be applied instantaneously at \(t = t_j \) and the system undergoes a state reset to \(x^+(t_j) = [x_1(t_j) x_2^+(t_j)]^T = [x_1(t_j) k_3(x_1(t_j))/m]^T \), see (13). We will show below that if \(x_1(t_1) < 0 \), then \(x_1(t_j) \leq 0, \forall j \geq 1 \). Note that for \(x_1(t_1) < 0 \) we have that \(x_2^+(t_1) > 0 \), since \(x_1(t_1) k_3(x_1(t_1)) < 0 \). Now, we study solutions flowing from \(x^+(t_1) \) until they reach again the set \(\mathcal{E}^{-} \). We denote the next time instants at which these solutions reach \(\mathcal{E}^{-} \) by \(t_{j+1} \) and \(f_{j+1} \) for \(\mu = \mu(x_1, x_2, t), \mu = \mu \) and \(\mu = \pi \), respectively. In doing so, we consider three different systems:

1. system (15) with \(f(t) = -g \mu(x_1(t), x_2(t), t) \) and solution \(x(t) \) on \((t_j, t_{j+1}) \),

2. system (15) with \(f(t) = -g \mu \), i.e. system (23), and solution \(\overline{x}(t) \) on \((t_j, f_{j+1}) \),

3. system (15) with \(f(t) = -g \pi \) and solution \(\overline{x}(t) \) on \((t_j, f_{j+1}) \).

All three solutions \(x(t) \), \(\overline{x}(t) \) and \(\overline{x}(t) \) have the same initial condition and are sketched in Figure 3. By \(\Gamma^{-} \) we denote the solution segment \(x(t) \), for \(t \in (t_j, t_{j+1}) \), and by \(\Gamma^{-} \) we denote the solution segment \(\overline{x}(t) \), for \(t \in (t_j, \overline{f}_{j+1}) \). By \(\chi \) we denote the set enclosed by the line segments \(\Gamma^{-} \) and the axis \(x_2 = 0 \) (gray set in Figure 3). A solution \(x(t) \) which starts in the set \(\chi \) can not cross \(\Gamma^{-} \) or \(\Gamma^{-} \). So, the solution \(x(t) \) is confined between \(\Gamma^{-} \) and \(\Gamma^{-} \) and if it leaves \(\chi \) then this can only happen through the line \(x_2 = 0 \). However, for an arbitrary initial condition, it might also be that the solution approaches the edge of \(\chi(t) \) asymptotically and therefore never leaves \(\chi \) (we once more recall the results in \([5, 8]\]). We first show that for \(\mu(t) = \pi \) solutions which start in \(\mathcal{E}^{-} \) return to \(\mathcal{E}^{-} \) in a finite time and that this return is governed by a contraction map.
with the initial conditions

Proposition 6
The flow of the resulting closed-loop system (6), (7), (9), (34) with \(\mu(t) = \overline{\mu} \) maps initial conditions \(\overline{\varphi}^j(t_j) \in \overline{\mathcal{E}} \) to \(\overline{\varphi}^j(t_{j+1}) \in \overline{\mathcal{E}} \), such that

\[
y_{j+1} = \overline{\varphi}(y_j), \tag{36}
\]

with \(y_j = \overline{\varphi}_1(t_j) \), is a contraction map.

Proof Without loss of generality we study the case that \(y_j := \overline{\varphi}_1(t_j) < 0 \) and therefore \(k_3(y_j) > 0 \). We study the system (11) with \(\mu(t) = \overline{\mu} \) which obeys the following equation of motion

\[
\begin{align*}
\dot{x}_1(t) &= x_2(t) \\
\dot{x}_2(t) &= -\omega_n^2 x_1(t) - 2\zeta \omega_n x_2(t) - g \overline{\mu}
\end{align*}
\tag{37}
\]

for \(t_j < t < t_{j+1} \), where \(t_j \) are the impulse times corresponding to this system, and \(\overline{\varphi}_1(t_j) < 0 \). Next we will derive the map \(y_{j+1} = \overline{\varphi}(y_j) \) with \(y_j := \overline{\varphi}_1(t_j) \). System (37) has the closed form solution (19)

\[
\begin{align*}
\overline{\varphi}_1(t) &= s_1(t - t_j)\overline{\varphi}_1(t_j) + s_2(t - t_j)\overline{\varphi}_2(t_j) - \overline{\varphi}_1(t_j), \\
\overline{\varphi}_2(t) &= s_1(t - t_j)\overline{\varphi}_1(t_j) + s_2(t - t_j)\overline{\varphi}_2(t_j) - \lambda_1 \lambda_2 \overline{\varphi}_2 \overline{\mu}(t - t_j),
\end{align*}
\tag{38}
\]

with the initial conditions \(\overline{\varphi}_1(t_j) = y_j, \overline{\varphi}_2(t_j) = \frac{k_3(y_j)}{m} =: K_3(y_j) \). The time-lapse \(t_{j+1} - t_j \) can be found from \(\overline{\varphi}_2(t_{j+1}) = s_1(t_{j+1} - t_j)y_j + s_2(t_{j+1} - t_j)K_3(y_j) - \lambda_1 \lambda_2 \overline{\varphi}_2(t_{j+1} - t_j) = 0 \). We substitute the functions \(s_1, \dot{s}_2 \) and \(s_2 \), given in (20), (83), and rearrange terms, which gives

\[
\begin{align*}
&\left(\frac{\lambda_1 \lambda_2}{\lambda_2 - \lambda_1} (y_j + \overline{\varphi}) - \frac{\lambda_1}{\lambda_2 - \lambda_1} K_3(y_j) \right) e^{\lambda_1(t_{j+1} - t_j)} \\
&+ \left(-\frac{\lambda_1 \lambda_2}{\lambda_2 - \lambda_1} (y_j + \overline{\varphi}) + \frac{\lambda_2}{\lambda_2 - \lambda_1} K_3(y_j) \right) e^{\lambda_2(t_{j+1} - t_j)} = 0.
\end{align*}
\tag{39}
\]

The time-lapse \(t_{j+1} - t_j \) is therefore given by

\[
t_{j+1} - t_j = \frac{1}{\lambda_2 - \lambda_1} \ln \left(\frac{y_j + \overline{\varphi} - \frac{1}{\lambda_2} K_3(y_j)}{y_j + \overline{\varphi} - \frac{1}{\lambda_1} K_3(y_j)} \right), \tag{40}
\]
which is bounded because \(y_j \geq -c \), i.e. \(\bar{t}_{j+1} - \bar{t}_j \leq \frac{1}{\lambda_2 - \lambda_1} \ln (\lambda_1/\lambda_2) \). The return value \(y_{j+1} \) of the map equals \(\bar{F}(y_j) = \bar{F}\bar{t}_{j+1} \), which yields

\[
\bar{F}(y_j) = s_1(\bar{t}_{j+1} - \bar{t}_j)(y_j + \bar{c}) + s_2(\bar{t}_{j+1} - \bar{t}_j)K_3(y_j) - \bar{c}
\]

\[
= a_2 \left(y_j + \bar{c} - \frac{K_3(y_j)}{\lambda_2} \right) e^{\lambda_2(\bar{t}_{j+1} - \bar{t}_j)} + a_1 \left(y_j + \bar{c} - \frac{K_3(y_j)}{\lambda_1} \right) e^{\lambda_1(\bar{t}_{j+1} - \bar{t}_j)} - \bar{c} \tag{41}
\]

with

\[
a_1 := -\frac{\lambda_1}{\lambda_2 - \lambda_1}, \quad a_2 := \frac{\lambda_2}{\lambda_2 - \lambda_1}. \tag{42}
\]

Substitution of (40) in (41) gives

\[
\bar{F}(y_j) = a_2 \left(y_j + \bar{c} - \frac{K_3(y_j)}{\lambda_2} \right) \left(y_j + \bar{c} - \frac{\bar{c} K_3(y_j)}{\lambda_2} \right)^{-a_1} + a_1 \left(y_j + \bar{c} - \frac{K_3(y_j)}{\lambda_1} \right) \frac{\bar{c} K_3(y_j)}{\lambda_1}^{a_2}
\]

which can be simplified using \(a_1 + a_2 = 1 \) to

\[
\bar{F}(y_j) = \bar{c} \left[\left(1 + \frac{y_j}{\bar{c}} \right) \frac{K_3(y_j)}{c \lambda_2} \right]^{a_2} \left[\left(1 + \frac{y_j}{\bar{c}} \right) \frac{K_3(y_j)}{c \lambda_1} \right]^{a_1} - \bar{c}
\]

\[
= \bar{c} \left[\left(1 + \frac{y_j}{\bar{c}} \right) \frac{K_3(y_j)}{c \lambda_2} \right]^{a_2} \left[\left(1 + \frac{y_j}{\bar{c}} \right) \frac{K_3(y_j)}{c \lambda_1} \right]^{a_1} - \bar{c} \quad \tag{44}
\]

Clearly, \(\bar{F}(y) \) has a fixed point at \(y^* = \bar{F}(y^*) \) if \(K_3(y^*) = 0 \). The map \(\bar{F} \) has therefore a unique fixed point at \(y = 0 \).

In order to study the contraction properties of this map, we now would have to evaluate the derivative \(\bar{F}(y) \), but a direct evaluation of this derivative is obstructed by the fact that \(K_3'(0) \) does not exist (note that \(k_3'(0) \) does not exist due to (31), (32)). Here, we use the Taylor expansion \((1 + x)^n \approx 1 + ax + \frac{a(a-1)}{2} x^2 \) on each of the terms in the brackets in the expression (44) and retain terms of \(O(y) \). Note that \(K_3(y) = O(\sqrt{y}) \) and \(K_3(y)^2 = O(y) \), see (33). For small values of \(y \), we can therefore approximate \(\bar{F} \) with

\[
\bar{F}(y) = \bar{c} \left[\left(1 + a_2 \frac{y_j}{\bar{c}} - a_2 \frac{K_3(y_j)}{\lambda_2 \bar{c}} + \frac{2 a_2(a_2 - 1) K_3^2(y_j)}{\lambda_2^2 \bar{c}^2} \right) \left(1 + \frac{y_j}{\bar{c}} - \frac{K_3(y_j)}{\lambda_1 \bar{c}} + \frac{2 a_1(a_1 - 1) K_3^2(y_j)}{\lambda_1^2 \bar{c}^2} \right) \right] - \bar{c}
\]

\[
= \bar{c} \left[a_1 + a_2 \frac{y_j}{\bar{c}} \right] - \bar{c} \left(\frac{a_1}{\lambda_2} + \frac{a_2}{\lambda_1} \right) K_3(y_j) \left(\frac{a_1}{\lambda_1} + \frac{a_2}{\lambda_2} \right) + \frac{a_1(a_2 - 1) K_3^2(y_j)}{2 \lambda_2^2} + \frac{a_1(a_1 - 1) K_3^2(y_j)}{2 \lambda_1^2} \left(\frac{K_3(y_j)}{\bar{c}} \right)^2 + O(y^2). \tag{45}
\]

The following coefficients appear in (45) \(a_1 + a_2 = 1, \quad \frac{a_1}{\lambda_2} + \frac{a_2}{\lambda_1} = 0, \) and

\[
a_1 a_2 + \frac{a_2(a_2 - 1)}{2 \lambda_2^2} + \frac{a_1(a_1 - 1)}{2 \lambda_1^2} - \frac{a_1 a_2}{2 \lambda_1^2} - \frac{a_2 a_1}{2 \lambda_2^2} = \frac{1}{2 \lambda_1 \lambda_2} = \frac{1}{2 \omega_n^2}. \tag{46}
\]

Hence, the map \(\bar{F} \) is approximated to leading order by

\[
\bar{F}(y) = y + \frac{1}{2 \omega_n^2} \frac{K_3^2(y)}{\bar{c}} + O(y^2) \tag{47}
\]
and \(k_3(y) \approx k_{3\text{approx}}(y) = -\text{sign}(y)\sqrt{2\omega_n^2/m^2|y|} \) for small values of \(|y|\), see (33). The slope of the map at the fixed point \(y = 0 \) therefore yields \(F'(0) = 1 - \mu/\bar{\mu} = 1 - \mu/\bar{\mu} \), which fulfills the condition \(0 \leq F'(0) < 1 \) because \(0 < \mu < \bar{\mu} \). Note that if another control law would have been chosen for which \(K_3' (0) \) is bounded, then it would hold that \(F'(0) = 1 \). For \(y \neq 0 \), the slope \(F'(y) \) is much easier to obtain as \(K_3'(y) \) is bounded for \(y \neq 0 \). For \(y < 0 \) we have

\[
F'(y) = a_2 \left(\frac{1 + y \bar{\mu}}{c} - \frac{K_3(y)}{c\lambda_2} \right)^{-a_1} \left(1 + \frac{y \bar{\mu}}{c} - \frac{K_3(y)}{c\lambda_1} \right)^{a_1} \left(1 - \frac{K_3'(y)}{\lambda_2} \right) + a_1 \left(\frac{1 + y \bar{\mu}}{c} - \frac{K_3(y)}{c\lambda_1} \right)^{-a_2} \left(1 + \frac{y \bar{\mu}}{c} - \frac{K_3(y)}{c\lambda_2} \right)^{a_2} \left(1 - \frac{K_3'(y)}{\lambda_1} \right).
\]

(48)

We introduce the following abbreviations:

\[
\begin{align*}
\bar{T}_1 &= 1 + \frac{y \bar{\mu}}{c} - \frac{K_3(y)}{c\lambda_1}, \\
\bar{T}_2 &= 1 + \frac{y \bar{\mu}}{c} - \frac{K_3(y)}{c\lambda_2}, \\
Z_1 &= \left(1 - \frac{K_3'(y)}{\lambda_1} \right), \\
Z_2 &= \left(1 - \frac{K_3'(y)}{\lambda_2} \right).
\end{align*}
\]

(49)

Using these abbreviations, together with \(a_1 + a_2 = 1 \), we write the slope \(F'(y) \) for \(y < 0 \) as

\[
F'(y) = a_2 \bar{T}_2^{-a_1} \bar{T}_1^{a_1} Z_2 + a_1 \bar{T}_1^{-a_2} \bar{T}_2^{a_2} Z_1 = a_2 \left(\frac{\bar{T}_2}{\bar{T}_1} \right)^{a_2-1} Z_2 + a_1 \left(\frac{\bar{T}_2}{\bar{T}_1} \right)^{a_2} Z_1.
\]

(51)

We now use the fact that \(\frac{a_2}{\lambda_2} + \frac{a_1}{\lambda_1} = 0 \) and therefore \(a_2 Z_2 + a_1 Z_1 = 1 \) to arrive at

\[
F'(y) = \left(\frac{\bar{T}_2}{\bar{T}_1} \right)^{a_2} \left(1 + a_2 Z_2 \left(\frac{\bar{T}_1}{\bar{T}_2} - 1 \right) \right).
\]

(52)

It holds that \(F(y) = F'(y) = 0 \) for \(\mu(t) = \mu \), so \(0 = 1 + a_2 Z_2 (\bar{L}_2/\bar{L}_1 - 1) \). Substitution of the latter gives

\[
F'(y) = \left(\frac{\bar{T}_2}{\bar{T}_1} \right)^{a_2} \left(1 - \frac{\bar{T}_2}{\bar{T}_1} \left(\frac{\bar{T}_1}{\bar{T}_2} - 1 \right) \right) = \left(\frac{\bar{T}_2}{\bar{T}_1} \right)^{a_2} \left(1 - \frac{\bar{T}_1 - \bar{T}_2 L_2}{\bar{T}_1 L_2} \right) = \left(\frac{\bar{T}_2}{\bar{T}_1} \right)^{a_2} \left(1 - \frac{\mu L_2}{\bar{\mu} L_2} \right).
\]

(53)

Because \(a_2 > 0 \), \(\frac{\bar{T}_2}{\bar{T}_1} < 1 \) and \(\frac{\mu \bar{\mu}}{L_2} > 1 \) for \(y < 0 \), it holds that the map \(F \) has its largest slope for \(y = 0 \), i.e. \(F'(y) \leq 1 - \mu/\bar{\mu} \). The symmetry of the problem implies that \(|F(y)| \leq (1 - \mu/\bar{\mu})|y| \) for all \(y \). The map \(F \) is therefore a contraction mapping, i.e.

\[
|y_{j+1}| \leq \left(1 - \frac{\mu}{\bar{\mu}} \right) |y_j|,
\]

since \(0 \leq 1 - \frac{\mu}{\bar{\mu}} < 1 \) due to the fact that \(0 < \mu \leq \bar{\mu} \) by the adoption of Assumption 1. Hence, the sequence \(y_j = \bar{x}_1(t_j) \) converges to zero as \(j \to \infty \). □

We now return to the problem that a solution \(x^+(t_j) \) is confined to the set \(\chi \), but (if no additional assumptions are made) might approach the end of the stick set \(\mathcal{E}(t) \) asymptotically and might therefore not return to \(x^-(t_{j+1}) \in \mathcal{E} \) in a finite time \(t_{j+1} < \infty \). To avoid such undesirable behaviour, we adopt the following assumption.

Assumption 3

We assume that \(\bar{\mu} < 2\mu \).
Under this assumption it holds that the previously defined map F in (36) satisfies $F(-\tau) \geq (1 - \mu/F) \cdot (-\tau) > -\varepsilon$. This assumption restricts the Γ_2 border of χ to end in \mathbb{E}. This fact will, in turn, be used to show that solutions of the resulting closed-loop system with time-varying $\mu(t)$ return in finite time to \mathbb{E}.

Proposition 7
A solution of the resulting closed-loop system (6), (7), (9), (34), with a friction coefficient $\mu(x_1, x_2, t)$, satisfying Assumptions 1 and 3, which start in \mathbb{E} at $t = t_1$ returns to \mathbb{E} in a finite time interval $t_2 - t_1$.

Proof The proof is given in Appendix B. □

Next, we consider the impulse times t_j with $j > 2$ and $x^-(t_2) \in \mathbb{E}$. We prove that if $x^-(t_2) \in \mathbb{E}^-$ then it holds that $x^-(t_j) \in \mathbb{E}^-$ for all $j > 2$. Similar reasoning holds for $x^-(t_2) \in \mathbb{E}^+$ due to the symmetry properties of the system.

Proposition 8
Solutions of the resulting closed-loop system (6), (7), (9), (34) with a friction coefficient $\mu(x_1, x_2, t)$, satisfying Assumptions 1 and 3, which start in \mathbb{E} at $t = t_j$ return to \mathbb{E} in a finite time $t_{j+1} - t_j$ with the lower and upper bounds $\tau_{j+1} - t_j \leq t_{j+1} \leq \tau_{j+1}$ given by

\[\tau_{j+1} - t_j = \frac{1}{\lambda_2 - \lambda_1} \ln \left(\frac{-\lambda_1 \lambda_2 (x_1(t_j) + \varepsilon) + \lambda_1 x_2^+(t_j)}{-\lambda_1 \lambda_2 (x_1(t_j) + \varepsilon) + \lambda_2 x_2^+(t_j)} \right), \]

\[\tau_{j+1} - t_j = \frac{1}{\lambda_2 - \lambda_1} \ln \left(\frac{-\lambda_1 \lambda_2 (x_1(t_j) + \varepsilon) + \lambda_1 x_2^+(t_j)}{-\lambda_1 \lambda_2 (x_1(t_j) + \varepsilon) + \lambda_2 x_2^+(t_j)} \right), \]

with $\chi(t_{j+1}) \leq x_1(t_{j+1}) \leq x_1(\tau_{j+1}) = 0$.

Proof The proof is given in Appendix B. □

We conclude that if $x^-(t_j) \in \mathbb{E}$, then the solution $x(t) \in \chi$ for $t \in (t_j, t_{j+1})$ and that this solution will hit the line $x_2 = 0$ in finite time-lapse $t_{j+1} - t_j$ with lower and upper bound given by (55) and (56), respectively. Note that, due to Proposition 2, we have that $x_2(t_{j+1}) = m_k(x_1(t_j))$ is bounded and, consequently, both τ_{j+1} and τ_{j+1} are upper bounded, which also follows from (92). In other words, after an impulsive control action a finite time interval of smooth flow follows before the next control impulse is applied.

Next, we exploit Proposition 8, which states that the position errors $y_j = x_1(t_j)$ at the impulse times t_j converge to zero faster for system (11) with time-varying $\mu(t)$ than for system (11) with $\mu(t) = \varepsilon$. Note that Proposition 8 only holds for initial conditions in \mathbb{E}.

Proposition 9
The flow of the resulting closed-loop system (6), (7), (9), (34) with a friction coefficient $\mu(x_1, x_2, t)$, satisfying Assumptions 1 and 3, maps initial conditions $x^-(t_j) \in \mathbb{E}$ to $x^-(t_{j+1}) \in \mathbb{E}$ such that

\[y_{j+1} = F(y_j), \]

with $y_j = x_1(t_j)$, is a contraction map.

Proof Proposition 8 proves that if $-\varepsilon \leq y_j \leq 0$, then it holds that $\bar{F}(y_j) \leq F(y_j) \leq 0$. Proposition 6 proves that \bar{F} is a contraction map, hence the map F is also a contraction map within \mathbb{E}. □

Proposition 9 proves that the sequence $y_j = x_1(t_j)$ converges to zero (i.e. the positioning error at the impulse times converges to zero). Next, we show that the position error converges to zero in finite time.
Proposition 10
A solution of the resulting closed-loop system (6), (7), (9), (34) with a friction coefficient \(\mu(x_1, x_2, t) \), satisfying Assumptions 1 and 3, and initial condition \(\mathbf{x}(t_2) \in \mathcal{E} \) reaches the origin in a finite time

\[
t_\infty - t_2 \leq \sqrt{\frac{2|y_2|}{g\mu \left(1 - \frac{\mu}{\tilde{\mu}}\right)^2}},
\]

with \(y_2 = x_1(t_2) \) and \(\mathbf{x}(t_\infty) = 0 \).

Proof The time difference between two consecutive impacts is bounded from above by (92) with \(x_1(t_j) = y_j \), i.e. \(t_{j+1} - t_j \leq \sqrt{\frac{2|y_j|}{g\mu \omega^2_n}} = \sqrt{\frac{2|y_j|}{g\mu}} \). The total time to arrive at the origin amounts to

\[
T := t_\infty - t_2 = \sum_{j=2}^{\infty} t_{j+1} - t_j \leq \frac{2|y_2|}{g\mu} \sum_{j=2}^{\infty} \sqrt{|y_j|}.
\]

Recursive usage of the contraction property in (54) yields

\[
|y_j| \leq \left(1 - \frac{\mu}{\tilde{\mu}}\right)^{j-2} |y_2|.
\]

Inequality (60) in combination with (59) gives the upper bound

\[
T \leq \sqrt{\frac{2|y_2|}{g\mu \omega^2_n}} \sum_{j=2}^{\infty} \left(1 - \frac{\mu}{\tilde{\mu}}\right)^{j-1} = \sqrt{\frac{2|y_2|}{g\mu}} \sum_{j=0}^{\infty} \left(1 - \frac{\mu}{\tilde{\mu}}\right)^{j}.
\]

Using the convergent geometric series

\[
\sum_{j=0}^{\infty} x^{1/2j} = \sum_{j=0}^{\infty} (x^{1/2})^j = 1/(1 - x^{1/2}) \quad |x| < 1,
\]

we can give the conservative estimate

\[
T \leq \sqrt{\frac{2|y_2|}{g\mu \omega^2_n}} \sum_{j=0}^{\infty} \left(1 - \frac{\mu}{\tilde{\mu}}\right)^{j} = \sqrt{\frac{2|y_2|}{g\mu \left(1 - \frac{\mu}{\tilde{\mu}}\right)^2}},
\]

which gives an upper bound for the finite attraction time. Since \(|y_2| \leq \varepsilon \) is bounded and Assumption 1 is satisfied, we can conclude that the attraction is asymptotic. \(\square \)

Proposition 11
Consider the resulting closed-loop system (6), (7), (9), (34) satisfying Assumptions 1, 2 and 3. The solutions of the resulting closed-loop system are bounded and converge to \(\mathbf{x} = 0 \) in a finite time.

Proof Boundedness is proven in Proposition 3. Assumption 2 assures that a solution with an arbitrary initial condition \(\mathbf{x}(t_0) \in \mathbb{R}^2 \) reaches \(\mathcal{E} \) is a finite time \(t_1 \). Under Assumption 3, Proposition 7 proves that any solution of the resulting closed-loop system which starts in \(\mathcal{E} \) at \(t = t_1 \) returns to \(\mathcal{E} \) in a finite time \(t_2 \). Propositions 9 and 10 prove that a solution which starts in \(\mathbf{x}^{-1}(t_2) \in \mathcal{E} \) reaches the origin in a finite time. \(\square \)

Finally, we will show that the origin of the resulting closed-loop system is globally uniformly asymptotically stable.
Theorem 1
Consider the resulting closed loop system (6), (7), (9), (34) satisfying Assumptions 1, 2 and 3. The origin of the resulting closed-loop system is globally uniformly asymptotically stable.

Proof Consider the candidate Lyapunov function $V(x) = \frac{1}{2}m x_1^2 + \frac{1}{2}k_1 x_1^2$ and with some abuse of notation $V(t) = V(x(t))$, i.e. the function $V(t)$ is right-continuous. Let us denote the value of the Lyapunov function $V(t_j)$ at impulse time-instants t_j by $V_j := V(t_j) = \frac{1}{2}m (x_1^2(t_j))^2 + \frac{1}{2}k_1 x_1^2(t_j)$. Using the notation $y_j = x(t_j)$ and the fact that $x_1^2(t_j) = k_3(x_1(t_j))/m = K_3(y_j)$, the increment $V_{j+1} - V_j$ satisfies:

$$V_{j+1} - V_j = \frac{1}{2}k_1 (y_{j+1}^2 - y_j^2) + \frac{1}{2}n (K_3^2(y_{j+1}) - K_3^2(y_j)).$$

(64)

Propositions 6, 7, and 9 prove the contraction properties (54):

$$|y_{j+1}| \leq (1 - \frac{\mu}{\mu'}) |y_j|, \text{ for } j \geq 1.$$

Moreover, the impulsive control law $K_3(y)$ is monotonically decreasing, see e.g. (30) in Section 3.2.1, i.e. $(K_3(y_2) - K_3(y_1))(y_2 - y_1) < 0 \forall y_1, y_2$. It therefore holds that $|K_3(y_{j+1})| < |K_3(y_j)|$ as well as

$$K_3^2(y_{j+1}) - K_3^2(y_j) < 0.$$

(65)

Using (65) and Assumption 1 in (64) yields

$$V_{j+1} - V_j < \frac{1}{2}k_1 (y_{j+1}^2 - y_j^2) < \frac{1}{2}k_1 \left(1 - \frac{\mu}{\mu'}\right) y_j^2 < 0$$

(66)

for $y_j \neq 0$. In other words, the Lyapunov function strictly decreases along the impulse time instants t_j. Let us now investigate the evolution of the Lyapunov function in between the impulse times (i.e. for $t \in (t_j, t_{j+1})$): $\dot{V} = -k_2 x_2^2 - mg\mu x_1 x_2, |x_2| \leq -k_2 x_2^2 - mg\mu |x_2|$. Since $x_2(t) \neq 0$ for all $t \in (t_j, t_{j+1})$, we have that $V(t) < V_j$, for $t \in (t_j, t_{j+1})$, $j \geq 1$. Moreover, it holds that $\dot{V}(t) \leq 0$ for $t \in [t_0, t_1)$. Let us define $\overline{V}_0 := \max(V_0, V_1)$. We can construct a function $\beta_V(\overline{V}_0, t)$ as follows:

$$\beta_V(\overline{V}_0, t-t_0) = \begin{cases} V_0 & t_0 \leq t \leq t_2 \\ \frac{\overline{V}_0}{t_2-t_0}(t-t_2) + V_0 & t_2 \leq t < t_3 \\ V_j-V_{j-1}V_{j-1}(t-t_j) + V_j & t_j \leq t < t_{j+1}, \ j > 2 \\ 0 & t \geq t_{\infty}, \end{cases}$$

(67)

such that

$$V(t) \leq \beta_V(\overline{V}_0, t-t_0), \ t \geq t_0,$$

(68)

where we used that $V(t_{\infty}) = 0$ because $x(t_{\infty}) = 0$, see Proposition 10. Clearly, $\beta_V(\overline{V}_0, t-t_0)$ is a continuous function of \overline{V}_0 and a continuous function of t because $\lim_{t \to \infty} V_j = 0$. For fixed $t-t_0$, the mapping $\beta_V(\overline{V}_0, t-t_0)$ is upper bounded by a class K_{∞} function with respect to \overline{V}_0. Moreover, since $V_j, \ j \geq 1$, is a strictly decreasing series tending to zero, see (66), we have that, for fixed \overline{V}_0, the mapping $\beta_V(\overline{V}_0, t-t_0)$ is decreasing with respect to $t-t_0$ and $\beta_V(\overline{V}_0, t-t_0) = 0$ for $t \geq t_{\infty}$ (where t_{∞} is bounded, see Proposition 11). Hence, β_V is upper bounded by a class K_L function $\overline{\beta}_V(\overline{V}_0, t-t_0) := \beta_V(\overline{V}_0, t-t_0) + \epsilon \overline{V}_0 e^{(t_0-t)}$, with $\epsilon > 0$. Hence, we can conclude that $V(t)$ is upper bounded by a class K_L function according to

$$V(t) \leq \overline{\beta}_V(\overline{V}_0, t-t_0), \ t \geq t_0.$$

(69)

Since it holds that $\alpha_1(|x|) \leq V(x) \leq \alpha_2(|x|)$, with $\alpha_1(|x|) := \min(\frac{k_1}{2}, \frac{\mu}{2})|x|^2$ and $\alpha_2(|x|) := \max(\frac{k_1}{2}, \frac{\mu}{2})|x|^2$, we can conclude from (69) that

$$|x(t)| \leq \alpha_1^{-1} \circ \overline{\beta}_V(\overline{V}_0, t-t_0), \ t \geq t_0.$$

(70)
Next, let us use that $V_0 = \max(V_0, V_1) \leq \max(\alpha_2(|x(x(t_0))|, \alpha_2(|x^+(t_1)|)) = \alpha_2(\max(|x(x(t_0)|, |x^+(t_1)|))$, since $\alpha_2(\cdot)$ is a K_∞-function. Combining the latter fact with (70) yields

$$\|x(t)\| \leq \alpha_i^{-1} \circ \beta_\nu(\alpha_2(\max(|x(x(t_0)|, |x^+(t_1)|)), t - t_0), t \geq t_0.$$

Consider a class K_∞-function $\gamma(\cdot)$ such that $\gamma(|x^-(t_1)|) \geq (x_0 - 1)^2 + K_2(x^-(t_1)) \forall x^-(t_1) \in \mathbb{Z}$, which indeed exists and only depends on $|x^-(t_1)|$ because of the symmetry properties and boundedness of K_3 and the fact that $|x^-(t_1)| = |x_0 - 1|$. Consequently, $|x^+(t_1)| = (x_0 - 1)^2 + K_3(x^-(t_1))$ and in turn it holds that $V(x^+(t_1)) \leq \alpha_2(\gamma(|x^-(t_1)|))$. Combining the latter fact with the implication $V(x^-(t_1)) \leq V(x(t_0)) \Rightarrow \alpha_i^{-1} \circ \alpha_2(|x(x(t_0)|) \geq |x^-(t_1)|$, gives $V(x^+(t_1)) \leq \alpha_2 \circ \gamma \circ \alpha_i^{-1} \circ \alpha_2(|x(x(t_0)|))$. Consequently, we can conclude that $|x^+(t_1)| \leq \alpha_i^{-1} \circ \alpha_2 \circ \gamma \circ \alpha_i^{-1} \circ \alpha_2(|x(x(t_0)|))$. Combining the latter fact with (71) yields

$$\|x(t)\| \leq \alpha_i^{-1} \circ \beta_\nu(\alpha_2(\max(|x(x(t_0)|, \alpha_i^{-1} \circ \alpha_2 \circ \gamma \circ \alpha_i^{-1} \circ \alpha_2(|x(x(t_0)|))), t - t_0), t \geq t_0.$$

If we define $\beta_\nu(|x(x(t_0)|) := \alpha_2(\max(|x(x(t_0)|, \alpha_i^{-1} \circ \alpha_2 \circ \gamma \circ \alpha_i^{-1} \circ \alpha_2(|x(x(t_0)|)))$, this inequality can be written as

$$\|x(t)\| \leq \alpha_i^{-1} \circ \beta_\nu(\beta_\nu(|x(x(t_0)|), t - t_0) \leq \beta_\nu(|x(x(t_0)|), t - t_0), t \geq t_0,$$

where $\beta_\nu(s,t)$ is a class $K_\mathcal{L}$ function, since β_ν is a class K_∞-function and $\beta_\nu(s,t)$ is a class $K_\mathcal{L}$ function. In other words the equilibrium point is globally uniformly asymptotically stable. Moreover, since all solutions of the system converge to the origin in finite time, see Proposition 11, the origin is globally uniformly asymptotically stable. This completes the proof.

5 Illustrative Example

In this section, we illustrate the effectiveness of the impulsive control strategy, developed in this paper, by means of an example. Hereeto, we consider a motion system as in Figure 1 with dynamics described by (6), where the inertia taken to be $m = 1$ and the gravitational acceleration $g = 10$. Moreover, the friction coefficient in (6) is of the form $\mu(x_1, x_2, t) = (\mu_1 - \mu_2)/(1 + 0.5|x_2|) + \mu_2 + \mu_3 \sin(\Omega t)$, where $\mu_1 = 0.4, \mu_2 = 1.3, \mu_3 = 0.05$ and $\Omega = 4$. In this friction law one can recognise a velocity-dependency with a pronounced Stribeck effect and an explicit time-dependency. Note that this friction law satisfies Assumption 1 with $\mu = 0.25$ and $\rho = 0.45$, which indicates a significant possible variation on the friction coefficient and which also implies the satisfaction of Assumption 3. The possible variation of the friction coefficient is also illustrated by the dashed lines in Figure 4. Next, we employ the switching impulsive controller design proposed in Section 3 and described by (7), (9), (34). Herein, the control parameters are designed as $k_1 = 1, k_2 = 0.5, k_3 = 3$, implying that $0 < k_3 < k_1 = 2k_1 < 2\sqrt{\kappa_1 m} = 0.25 < 1$ and $k_1 = 2\sqrt{\kappa_1 m} = 1.5 > 1$ as proposed in Section 3.3, and the impulsive control design (9) is designed as depicted in Figure 5, where $k_3(y) = K_3(y)$ since $m = 1$.

Figures 6 and 7 depict a simulated response of the closed-loop system for an initial condition $x_1(0) = -4$ and $x_2(0) = -4$. Figure 8 shows the corresponding time evolution of the friction coefficient along this solution of the closed-loop system (a different perspective on the variation of the friction coefficient along the same solution of the closed-loop system is represented by the solid line in Figure 4). Figures 6 clearly shows that the response indeed converges to the origin in finite time, while the jumps in the velocity induced by the impulsive control action are clearly visible. This figure also displays the time instants $t_1 = 3.55$ and $t_2 = 4.40$ at which the response hits, for the first time, the sets \mathcal{S} (maximal stick set) and \mathcal{E} (minimal stick set), respectively (see also Figure 7). Moreover, the response converges to the origin in the finite time $t_\infty = 4.8707$. The upper bound on t_∞ that can be computed using Proposition 10 is $t_\infty = 5.5162$. This upper bound on t_∞ is not overly conservative and can be considered to be a realistic bound on the time in which convergence to the setpoint is achieved.

We care to stress that the impulsive control design by no means exploits knowledge on the particular friction law used in this example and indeed guarantees robust stabilisation for any position-, velocity- and time-dependent friction coefficient satisfying the same bounds.
6 Conclusions

In this paper, we have provided a solution to the robust set-point stabilisation problem for motion systems subject to uncertain friction. A robust stability guarantee with respect to frictional uncertainties is particularly relevant in practice, since uncertainties in the friction model are unavoidable. We propose an impulsive feedback control design, consisting of a non-impulsive state-feedback and a state-dependent impulsive feedback, that robustly stabilises the set-point for a class of position-, velocity- and time-dependent friction laws with uncertainty. Moreover, this control strategy guarantees the finite-time convergence to the set-point, thereby inducing favourable transient performance characteristics in the resulting closed loop. The results are illustrated by means of a representative motion control example.

Figure 4: Friction coefficient. Dashed lines indicate bounds on and mean of the friction coefficient and the solid line indicates the evolution of the friction coefficient along a solution of the closed-loop system.

Figure 5: Impulsive control law.

Figure 6: Time history of the position $x_1(t)$ and the velocity $x_2(t)$ for $x_1(0) = -4$ and $x_2(0) = -4$.

Figure 7: Phase portrait depicting $x_2(t)$ versus $x_1(t)$ for $x_1(0) = -4$ and $x_2(0) = -4$.
A Solutions of locally bounded variation

In this appendix, we show that using the impulsive control strategy proposed in this paper, the resulting closed-loop system described by the measure differential inclusion (6), (7), (34), (9) satisfying Assumptions 1, 2 and 3, exhibits solutions of locally bounded variation. Clearly, \(\dot{x}_1(t) \) is an absolutely continuous function of time. So, we only need to show that \(x_2(t) \) is of locally bounded variation. Hereto, note that the variation of \(x_j \) in \((e_j, t_{j+1}) \) is
\[
\sum_{j=2}^{\infty} x_j^+(t_j) + \sum_{j=2}^{\infty} \text{var}(x_2(t), (t_j, t_{j+1})),
\]
where we used, firstly, Assumption 1, secondly, that for \(j \geq 2 \), \(x_1(t) \geq (-mg\mu/k_1, t \in (t_j, t_{j+1})) \) and finally that \(x_2(t) > 0 \) in between jumps. Using the fact that in between jumps it holds that \(\dot{x}_2(t) < 0 \), we can conclude that \(\text{var}(x_2(t), (t_j, t_{j+1})) = x_2^+(t_j), j \geq 2 \) and, consequently,
\[
\text{var}(x_2(t), [t_2, t_{\infty}]) = 2 \sum_{j=2}^{\infty} x_2^+(t_j).
\]
Hence, to conclude that \(x_2(t) \) is of locally bounded variation, we need to show that \(\sum_{j=2}^{\infty} x_2^+(t_j) < \infty \). From (24), we have that
\[
x_2^+(t_j) = \frac{\lambda_1 \lambda_2}{\lambda_2 - \lambda_1} \left(e^{-\lambda_1 \zeta - t_j} - e^{-\lambda_2 \zeta - t_j} \right)
= -\frac{\lambda_1 \lambda_2}{\lambda_2 - \lambda_1} \left(e^{-\lambda_1 \zeta - t_j} \left(e^{(\lambda_1 - \lambda_2) \zeta - t_j} - 1 \right) \right).
\]

Let us use the following facts:

- According to (92), we have that \(t_{j+1} - t_j < \sqrt{2|x_1(t_j)|} / g \mu \);
• $|x_1(t_j)| \leq \frac{mg}{k_1}$,

to conclude that $\tau_{j+1} - t_j < \frac{|x_2|}{\omega_n}$. Using the latter fact, the following statements are valid:

- $e^{-\lambda_1 (\tau_{j+1} - t_j)} \leq e^{-\lambda_1 \frac{|x_2|}{\omega_n}}$ for $(\tau_{j+1} - t_j) \leq \frac{|x_2|}{\omega_n}$;
- $e^{(\lambda_1 - \lambda_2) (\tau_{j+1} - t_j)} - 1 \leq (\lambda_1 - \lambda_2) e^{(\lambda_1 - \lambda_2) \frac{|x_2|}{\omega_n} (\tau_{j+1} - t_j)}$, for $(\tau_{j+1} - t_j) \leq \frac{|x_2|}{\omega_n}$.

Using the latter facts in (76) gives

$$x_2^+(t_j) \leq - \frac{\lambda_1 \lambda_2}{\lambda_2 - \lambda_1} \left(e^{-\lambda_1 \frac{|x_2|}{\omega_n}} \right) \left((\lambda_1 - \lambda_2) e^{(\lambda_1 - \lambda_2) \frac{|x_2|}{\omega_n} (\tau_{j+1} - t_j)} \right) (\tau_{j+1} - t_j)$$

(77)

with $M > 0$ bounded. Hence, we can conclude that

$$\sum_{j=2}^{\infty} x_2^+(t_j) \leq M \sum_{j=2}^{\infty} (\tau_{j+1} - t_j) \leq M \sqrt{\frac{2|x_1(t_2)|}{g \mu}} \frac{1}{\sqrt{1 - \left(1 - \mu \right)^{1/2}}},$$

(78)

where we used (63). Subsequently using the fact that $|x_1(t_2)| \leq \frac{mg}{k_1}$ and Assumption 3 yields

$$\sum_{j=2}^{\infty} x_2^+(t_j) \leq \frac{2M}{(\sqrt{2} - 1)\omega_n} < \infty.$$

(79)

Hence, the combination of (75) and (79) shows that $\text{var}(x_2(t), [t_2, t_\infty]) < \infty$, which also implies that $x_2(t)$ is of locally bounded variation. Hence, this validates the formulation of the resulting closed-loop system in terms of a measure differential inclusion.

B Proofs

B.1 Proof of Proposition 1

By exploiting the Laplace transforms $X_i(s) = \mathcal{L}(x_i(t))$, $i = 1, 2$, $F(s) = \mathcal{L}(f(t))$, (15) can be transformed to $sX_1(s) - x_{10} = X_2(s)$, $sX_2(s) - x_{20} = -\omega_n^2 X_1(s) - 2 \zeta \omega_n X_2(s) + F(s)$, and we obtain that it holds that $X_1(s) = S_1(s)x_{10} + S_2(s)x_{20} + S_2(s)F(s)$, where the $S_1(s)$ and $S_2(s)$ are the transfer functions of the initial conditions given by

$$S_1(s) = \frac{s + 2 \zeta \omega_n}{s^2 + 2 \zeta \omega_n s + \omega_n^2} = \frac{\lambda_2}{\lambda_2 - \lambda_1} \frac{1}{s - \lambda_1} - \frac{\lambda_1}{\lambda_2 - \lambda_1} \frac{1}{s - \lambda_2},$$

(80)

$$S_2(s) = \frac{1}{s^2 + 2 \zeta \omega_n s + \omega_n^2} = - \frac{1}{\lambda_2 - \lambda_1} \frac{1}{s - \lambda_1} + \frac{1}{\lambda_2 - \lambda_1} \frac{1}{s - \lambda_2},$$

(81)

We take the inverse Laplace transform of $S_1(s)$ and $S_2(s)$ to obtain the expressions for $s_1(t)$, $s_2(t)$ as in (20), for which it holds that $s_1(0) = 1$, $s_2(0) = 0$ and the following inequalities hold

$$s_1(t) > 0 \quad \forall t > -\frac{1}{\lambda_2 - \lambda_1} \ln \left(\frac{\lambda_2}{\lambda_1} \right),$$

$$s_2(t) > 0 \quad \forall t > 0.$$

(82)

Differentiation of (20) with respect to time gives

$$\dot{s}_1(t) = -\lambda_1 \lambda_2 s_2(t),$$

$$\dot{s}_2(t) = \frac{1}{\lambda_2 - \lambda_1} \left(-\lambda_1 e^{\lambda_1 t} + \lambda_2 e^{\lambda_2 t} \right) = s_1(t) + (\lambda_1 + \lambda_2) s_2(t),$$

(83)
and it therefore holds that $\dot{s}_2(t) > 0$ for $t < \frac{1}{\lambda_2 - \lambda_1} \ln \frac{\lambda_1}{\lambda_2}$ from which we conclude, using (82), that

$$\dot{s}_2(t) > 0 \iff s_1(-t) > 0.$$ \hspace{1cm} (84)

The general solution of (15), with the initial condition (16) and on a non-impulsive time-interval for which $x_2(t) \neq 0$ does not change sign, can therefore be written as

$$x_1(t) = s_1(t-t_0)x_{10} + s_2(t-t_0)x_{20} + \int_{t_0}^{t} s_2(t-\tau)f(\tau)\,d\tau,$$

$$x_2(t) = \dot{s}_1(t-t_0)x_{10} + \dot{s}_2(t-t_0)x_{20} + \int_{t_0}^{t} \dot{s}_2(t-\tau)f(\tau)\,d\tau.$$ \hspace{1cm} (85)

We now decompose the input $f(t)$ in a constant input f_{const} and a time-varying input $f_{\text{var}}(t)$, i.e.

$$f(t) = \underbrace{-g \mu_{\text{const}} \text{sign}(x_2)}_{f_{\text{const}}} \underbrace{-g(\mu(t) - \mu_{\text{const}}) \text{sign}(x_2)}_{f_{\text{var}}(t)}$$ \hspace{1cm} (86)

for some $\mu_{\text{const}} > 0$. The convolution integrals in (85) of the constant input yield

$$\int_{t_0}^{t} s_2(t-\tau)f_{\text{const}}\,d\tau = \left[\frac{f_{\text{const}}}{\lambda_1 \lambda_2} s_1(t-\tau) \right]_{t_0}^{t} = \frac{f_{\text{const}}}{\lambda_1 \lambda_2} (1 - s_1(t-t_0)),$$

$$\int_{t_0}^{t} \dot{s}_2(t-\tau)f_{\text{const}}\,d\tau = [-f_{\text{const}} s_2(t-\tau)]_{t_0}^{t} = f_{\text{const}} s_2(t-t_0).$$ \hspace{1cm} (87) \hspace{1cm} (88)

If $x_2 > 0$ and $\mu_{\text{const}} = \mu$, then it holds that $f_{\text{var}}(t) \leq 0$ for all t and, using the inequalities (82), (84), we arrive at the following inequalities for the convolution integrals of the time-varying input $f(\tau)$ in (85):

$$\int_{t_0}^{t} s_2(t-\tau)f_{\text{var}}(\tau)\,d\tau \leq 0 \quad t - t_0 \geq 0,$$

$$\int_{t_0}^{t} \dot{s}_2(t-\tau)f_{\text{var}}(\tau)\,d\tau \leq 0 \quad t - t_0 \leq \frac{1}{\lambda_2 - \lambda_1} \ln \frac{\lambda_1}{\lambda_2}.$$ \hspace{1cm} (89)

Similarly, if $x_2 > 0$ and $\mu_{\text{const}} = \overline{\mu}$, then it holds that $f_{\text{var}}(t) \geq 0$ and the inequalities for the convolution integrals change sign. Let $(\underline{x}_1(t), \underline{x}_2(t))$ denote the solution of the initial value problem (15), (16) for $\mu(t) = \mu$ and $(\overline{x}_1(t), \overline{x}_2(t))$ for $\mu(t) = \overline{\mu}$. The latter two solutions for constant μ and positive velocity $x_2 > 0$ can be expressed in closed form as in (18) and (19). Similar expressions can obviously be derived for the case that $x_2 < 0$. The inequalities on the time-varying input in (89) imply that, for a certain time-interval, the solution $(x_1(t), x_2(t))$ is lower and upper bounded by the solutions $(\underline{x}_1(t), \underline{x}_2(t))$ and $(\overline{x}_1(t), \overline{x}_2(t))$ according to (21).

B.2 Proof of Proposition 2

We first investigate the slope of $f(t)$ given by

$$f'(t) = \xi \lambda_1 \lambda_2 s_2(t_j - t) = -\xi \frac{\lambda_1 \lambda_2}{\lambda_2 - \lambda_1} \left(e^{\lambda_1(t_j - t)} - e^{\lambda_2(t_j - t)} \right).$$ \hspace{1cm} (90)

It holds that $f'(t_j) = 0$ and $f'(t_{j+1}) = -x_{j+1}^2(t_j)$. Further differentiation gives

$$f''(t) = -\xi \lambda_1 \lambda_2 \dot{s}_2(t_j - t) = -\xi \frac{\lambda_1 \lambda_2}{\lambda_2 - \lambda_1} \left(-\lambda_1 e^{\lambda_1(t_j - t)} + \lambda_2 e^{\lambda_2(t_j - t)} \right) = -\lambda_2 f'(t) - \xi \lambda_1 \lambda_2 e^{\lambda_1(t_j - t)}.$$ \hspace{1cm} (91)
The slope \(f'(t) \) is strictly negative on the open domain \(t > t_j \). In addition, it can easily be checked that also \(f''(t) < -\frac{\omega_n^2}{\epsilon} < 0 \) on the domain \(t > t_j \). We can therefore conclude that, for \(\zeta > 1 \), the algebraic equation \(f(L_{j+1}) = 0 \) has a unique solution. Moreover, on the domain \(t > t_j \), the function \(f \) is bounded from above by a concave parabola, i.e. \(f(L_{j+1}) < -\frac{\omega_n^2}{\epsilon}(L_{j+1} - t_j)^2 - x_1(t_j) \), and the end time therefore has the upper bound

\[
L_{j+1} - t_j < \frac{2|x_1(t_j)|}{\omega_n^2} = \frac{2|x_1(t_j)|}{g\mu}.
\]

(92)

The value of \(x^+_j(t_j) \) is determined by the evaluation of \(x_\omega(t_j) \), given by (24) at \(t = t_j \) using the previously calculated value of \(L_{j+1} \). Since \(L_{j+1} \) is bounded, due to the fact that \(x_1 \) is bounded for all \((x_1, x_2) \in \mathcal{E} \), also \(x^+_j(t_j) \) is bounded.

Subsequently, the impulsive control action \(k_3(x_1(t_j)) \) can be computed from (27). Hence, \(k_3(x_1) \) is uniquely defined and bounded for all \((x_1, x_2) \in \mathcal{E} \) and the proof is complete.

B.3 Proof of Proposition 3

Consider the energy function \(V(x) = \frac{1}{2}mx^2 + \frac{1}{2}k_1x^2 \). Define the set \(\Omega = \{ x \in \mathbb{R}^2 \mid V(x) > \frac{1}{2}k_1 \left(\frac{\epsilon}{\sqrt{\mu}} \right)^2 \} \). By definition of the impulsive part of the control law (9) no impulsive control action will occur for \(x \in \Omega \) because \(\Omega \cap \mathcal{E} = \emptyset \). Hence, using (11), the time-derivative of \(V \) along solutions of the closed-loop system can be evaluated with \(\dot{V} = -k_2x_2^2 - 2mg\mu(x_1, x_2, 0)|x_2| \leq -k_2x_2^2 - mg\mu|x_2| \), for \(x \in \Omega \). The parameter \(k_2 \) switches from \(k_{21} > 0 \), for \(t_0 < t < t_1 \), to a larger value \(k_{22} > 0 \), for \(t \geq t_1 \). It holds that \(\dot{V} \leq 0 \) for \(x \in \Omega \), implying that solutions cannot grow unbounded along solutions of (8) if \(\lambda_2 > 0 \). The switching of \(k_2 \) such that \(\dot{V} > 0 \) when the impulsive controller is switched on guarantees the satisfaction of the conditions of Proposition 2 and therewith implies that \(U = k_3(x_1) \) is defined and bounded for all \(x \in \mathcal{E} \), whereas \(U = 0 \) for \(x \notin \mathcal{E} \). The impulsive control force \(U \) is therefore bounded and leads to a bounded jump in \(x_2 \). Hence the boundedness of solutions in forward time is guaranteed.

B.4 Proof of Proposition 7

Without loss of generality we consider the case \(x_1(t_1) < 0 \). Under Assumption 3 and (54), it holds that \(\mathcal{B}(-\tau) \geq (1 - \mu/\bar{\mu}) \cdot (-\tau) > -\zeta \) and therefore \(x_1(t_2) \geq -\zeta + \zeta > -\zeta \). Solutions can therefore only escape the set \(\chi \), see Figure 3, through the "inner" part \(-\zeta < x_1 < 0 \) of \(\mathcal{E}^{-} \). The stick set \(\mathcal{E}^{-} \)is therefore reached in a finite time, because the edges of the stick set \(\mathcal{E}(t) \geq \mathcal{E}^{-} \)can not be reached (see [5,8]). We can estimate the time lapse \(t_2 - t_1 \) by evaluation of the condition \(x_\omega^{-}(t_2) = 0 \) using the general solution as in (85) with \(t_0 = t_2 \) as reference time \(x_2^{-}(t_1) = -\lambda_1\lambda_2s_2(t_1 - t_2)(x_1(t_2) + \zeta) + \int_{t_1}^{t_2} s_2(t_1 - \tau)f_{\text{var}}(\tau) d\tau \) with \(f_{\text{var}} = -g(\mu(t) - \bar{\mu}) \). The inequalities \(s_2(t) < 0 \), \(s_2(t) > 1 \) for \(t < 0 \), together with \(t_2 > t_1 \), give \(x_2^{-}(t_1) > -\lambda_1\lambda_2s_2(t_1 - t_2) + \zeta > -\lambda_1\lambda_2s_2(t_1 - t_2) + \zeta + 2g \), where we used that \(x_2(t_2) \geq -\zeta + \zeta \) and, together with Assumption 3 and (28) \(x_2^{-}(t_1) = K_3(x_1(t_1)) \), it therefore holds that

\[
s_2(t_1 - t_2) > \frac{-K_3(x_1(t_1))}{(2\zeta - \tau)\lambda_1\lambda_2}.
\]

(93)

Clearly, the time lapse

\[
t_2 - t_1 < -s_2^{-1}(\frac{-K_3(x_1(t_1))}{(2\zeta - \tau)\lambda_1\lambda_2})
\]

(94)

is finite if Assumption 3 holds. The function \(s_2(t) \) is strictly increasing for \(t < 0 \) as \(s_2(t) > 1 \) and it therefore holds that \(s_2(t) < t \) for \(t < 0 \), and correspondingly \(s_2^{-1}(x) > x \) for \(x < 0 \). The time lapse \(t_2 - t_1 \) can therefore be bounded from above by

\[
t_2 - t_1 < \frac{K_3(x_1(t_1))}{(2\zeta - \tau)\lambda_1\lambda_2}.
\]

(95)
B.5 Proof of Proposition 8

Using (24) for \(t = t_j \), \(\bar{x}_k(t_j) = -c(1 - s_1(t_j - L_{j+1}) \) and the inequality \(-c \leq \bar{x}_1(t_j)\), because \(x^-(t_j) \in \mathbb{R}^+ \), we find that \(s_1(t_j - L_{j+1}) \geq 0 \) and, using (82), it therefore holds that \(L_{j+1} - t_j \leq \frac{1}{\lambda_2 - \lambda_1} \ln \frac{\bar{x}_1(t_j)}{\bar{x}_2(t_j)} \). Hence, (21) in Proposition 1 holds, implying that the solution \(x(t) \) is wedged between \(x(t) \) and \(\bar{x}(t) \), i.e. \(\bar{x}_1(t) \leq x_1(t) \leq \bar{x}_2(t) \). Hence, (82) holds, implying that the velocities \(\bar{x}_2(t) \), \(x_2(t) \) and \(x_1(t) \) are strictly positive. We therefore deduce that \(T_{j+1} \leq t_{j+1} \leq T_{j+1} \).

The time-instant \(T_{j+1} \) is a lower bound for \(t_{j+1} \) and can be found from \(\bar{x}_2(t_{j+1}) = 0 \). By using the general solution (19) and taking \(t_0 = t_j \) as reference-time we obtain the expression

\[
\bar{x}_2(T_{j+1}) = s_1(T_{j+1} - t_j)x_1(t_j) + s_2(T_{j+1} - t_j)x_2(t_j) - \lambda_1 \lambda_2 s_2(T_{j+1} - t_j) = 0.
\]

We substitute the functions \(s_1 \), \(s_2 \) and \(\bar{x}_2 \) and rearrange terms, which gives

\[
\left(\frac{\lambda_1 \lambda_2}{\lambda_2 - \lambda_1} (x_1(t_j) + \bar{x}_1) - \frac{\lambda_1}{\lambda_2 - \lambda_1} x_2^+(t_j) \right) e^{\lambda_1 (T_{j+1} - t_j)} + \left(-\frac{\lambda_1 \lambda_2}{\lambda_2 - \lambda_1} (x_2^+(t_j) + \bar{x}_1) + \frac{\lambda_2}{\lambda_2 - \lambda_1} x_2^+(t_j) \right) e^{\lambda_2 (T_{j+1} - t_j)} = 0.
\]

Further rearranging terms an taking the natural logarithm yields the time-lapse

\[
T_{j+1} - t_j = \frac{1}{\lambda_2 - \lambda_1} \ln \left(\frac{-\lambda_1 \lambda_2 (x_1(t_j) + \bar{x}_1) + \lambda_1 x_2^+(t_j)}{-\lambda_1 \lambda_2 (x_1(t_j) + \bar{x}_1) + \lambda_2 x_2^+(t_j)} \right),
\]

which is strictly positive for \(x_2^+(t_j) > 0 \), because \(-c \leq x_1(t_j) \leq 0\). Similarly, we obtain the time-lapse

\[
T_{j+1} - t_j = \frac{1}{\lambda_2 - \lambda_1} \ln \left(\frac{-\lambda_1 \lambda_2 (x_1(t_j) + \bar{x}_1) + \lambda_1 x_2^+(t_j)}{-\lambda_1 \lambda_2 (x_1(t_j) + \bar{x}_1) + \lambda_2 x_2^+(t_j)} \right),
\]

which gives the upper bound \(T_{j+1} \) for \(t_{j+1} \). Clearly, the upper bound (92) for \(L_{j+1} \) is also an alternative upper bound for \(t_{j+1} \).

References

