Improving Pushbelt Continuously Variable Transmission Efficiency via Extremum Seeking Control

Stan van der Meulen and Bram de Jager
Eindhoven University of Technology
Department of Mechanical Engineering
P.O. Box 513, 5600 MB Eindhoven
The Netherlands
Email: {S.H.v.d.Meulen,A.G.de.Jager}@tue.nl

Erik van der Noll
Bosch Business Unit CVT
Department of Advanced Engineering
P.O. Box 500, 5000 AM Tilburg
The Netherlands
Email: Erik.vanderNoll@nl.bosch.com

1 Background

The infinite number of transmission ratios in a continuously variable transmission (CVT) provides more freedom to match the engine operating conditions to the variable driving conditions in comparison with power transmission devices with a fixed number of transmission ratios. This improves the fuel consumption of the vehicle. The transmission ratio is realized by the variator, a friction drive, see Fig. 1, which consists of a metal V-belt that is clamped between two pairs of conical sheaves. The research is concerned with the variator control design, where the objective is to further improve the variator efficiency, while the variator functionality is preserved.

![Fig. 1: Pushbelt CVT variator (Left: Test rig; Right: Illustration).](image)

2 Variator Control Design

2.1 Actuators and Sensors

In production CVTs, the clamping forces F_p and F_s (Fig. 1) are applied by the hydraulic actuation system, which includes two servo valves. The manipulated variables are the servo valve currents I_p and I_s. The measured variables are the secondary clamping force F_s and the angular velocities ω_p and ω_s (Fig. 1). Furthermore, T_p and T_s (Fig. 1) denote the torques.

2.2 Control Objectives

The control objectives are: 1) track a prescribed speed ratio reference $r_{s,ref} = \omega_s / \omega_p$ and 2) optimize the variator efficiency $\eta = \omega_s / \omega_p$. Clearly, the variator efficiency is a performance variable that is not measured. Hence, a measured variable is required that indicates performance.

3 Experimental Results

In the experiments, the primary moveable conical sheave is fixed. This isolates the problem of optimizing the variator efficiency and neglects the problem of tracking a prescribed speed ratio reference. In Fig. 2 (Left), open loop experiments are shown in which F_s decreases. Conclusions are: 1) a global maximum exists in the F_s-η map, 2) a global maximum in the F_s-r_s map, and 3) the extrema in 1) and 2) occur for nearly the same value of F_s. Hence, the speed ratio r_s indicates performance.

![Fig. 2: Experiments (Left: Open loop; Right: Closed loop) (solid: Measurement; dashed: Extremum in F_s-r_s map; dashed-dotted: Conventional variator control design).](image)

The extremum in the F_s-r_s map is found by means of extremum seeking control (ESC) [1] in a stable way. In Fig. 2 (Right), closed loop experiments are shown in which F_s decreases. The ESC algorithm converges towards a small neighborhood of the extremum in the F_s-r_s map and outperforms a conventional variator control design.

References